Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Деформации упругие в зоне трещин

Часто удобно оперировать понятиями энергетических концепций вместо характеристик напряженно-деформированного состояния. Это не представляет никаких трудностей, поскольку Ирвин в 1957 г. показал, что между напряженным состоянием около вершины трещины и скоростью освобождения энергии упругой деформации G в зоне трещины существует простая зависимость. Для изотропных материалов эта зависимость имеет следующие простые выражения  [c.21]


При одноосном растяжении пластины единичной толщины без трещины упругая энергия на единицу объема е=а 12Е. При растяжении такой же пластины с трещиной длиной 21, направленной перпендикулярно растягивающей силе, в зоне трещины в форме эллипса с полуосями / и 21 площадью 2я/ упругая энергия деформации пластины с трещиной уменьшается на величину  [c.421]

Сопротивление элементов конструкций хрупкому разрушению. рассматривается на основе представлений об условиях возникновения, распространения и торможения трещин и о местных деформациях в зоне трещины. Процессы хрупкого разрушения в элементах из конструкционных металлов протекают в упругопластической области при этом относительная роль упругих и пластических деформаций существенно зависит от механических свойств металла, тепловых условий, условий нагружения (в смысле их уровня и динамичности) и вида деформированного состояния.  [c.23]

Гибка - операция, изменяющая кривизну заготовки практически без изменения ее линейных размеров (рис. 3.74, а). В процессе гибки пластическая деформация сосредоточивается на узком участке, контактирующем с пуансоном, в то время как участки, образующие полки детали, деформируются упруго. В зоне пластических деформаций наружные слои растягиваются, а внутренние (обращенные к пуансону) сжимаются. У середины заготовки (по толщине) находятся слои, деформация которых равна нулю. Из сказанного следует, что с достаточной степенью точности размеры заготовки для детали, получаемой гибкой, можно определять по условию равенства длин заготовки и детали по средней линии. Деформация растяжения наружного слоя и сжатия внутреннего увеличивается с уменьшением радиуса скругления рабочего торца пуансона. Деформация растяжения наружного слоя не беспредельна, и при определенной ее величине может начаться разрушение заготовки с образованием трещин, идущих от наружной поверхности в толщу заготовки. Это обстоятельство ограничивает минимальные радиусы r ia, исключающие разрушение заготовки. В зависимости от пластичности материала заготовки Гти, = (0,1. .. 2) 5.  [c.131]

Следовательно, определение Kit представляется принципиально очень простым, поскольку образец, содержащий любую трещину,. может быть испытан, а значение К может быть рассчитано. Однако практическое осуществление испытаний наталкивается на многие трудности. Таковой, например, является создание соответствующей трещины. Может случиться, что длину трещины нужно измерить в ходе эксперимента с тем, чтобы в момент спонтанного излома можно было зафиксировать истинную длину трещины в данный момент. Очень серьезная теоретическая и практическая трудность возникает, когда в зоне трещины материал образца будет течь (испытывает пластическую деформацию). Уравнения механики разрушения были выведены на основе законов теории упругости. У металлов эти уравнения действительны лишь с большим приближением , так как в зоне трещины всегда имеет место, некоторая пластическая деформация. Из-за возникающей пластической зоны в целях надежности нужно считаться с большей, чем в действительности, длиной трещины. Радиус пластической зоны г п определяют по следующей зависимости  [c.40]


Далее в формулы для определения напряжений и деформаций в зоне трещины вводятся относительные напряжения ст — а/ао.2 и относительные (по отношению к ео,г) деформации 8=е/ео,2- Тогда соотношение для определения Ki в упругой области записывается в виде /fi = а - /яГ а коэффициент концентрации деформаций — в виде  [c.23]

Существенную информацию о характере перераспределения напряжений и деформаций в зонах трещин при плоском напряженном состоянии и плоской деформации получают, выполняя численные решения упругопластических задач с использованием методов конечных элементов и упругих решений. По результатам этих решений при переходе от объемного напряженного состояния (для толстых пла-  [c.36]

Критическое раскрытие трещины как интегральная характеристика местных деформаций в зоне трещин применяется также для определения предельных нагрузок как в упругой  [c.58]

Принимается, что ири растяжении пластины единичной толщины с трещиной длиной 2/, направленной перпендикулярно растягивающим силам, разгружается область в зоне трещины, в форме эллипса с полуосями / и 2/, площадью 2л/ . Следовательно, упругая энергия деформации пластины с трещиной  [c.190]

В сварных деталях и изделиях в процессе сварки под действием неравномерного нагрева основного металла и структурных превращений в зоне термического влияния возникают упругие и пластические деформации, нарушающие заданные размеры конструкции и в некоторых случаях вызывающие образование трещин в металле шва и околошовной зоны.  [c.67]

Обычно в зоне повышенных напряжений образуются местные пластические деформации без образования трещины. Весь остальной объем тела за пределами этой зоны находится в упругом состоянии, и несущая способность сохраняется практически до тех же значений сил, что и при отсутствии концентрации. Это дает право при статическом нагружении не учитывать местных напряжений.  [c.399]

В действительности для большинства реальных материалов в малой области конца разреза из-за больших напряжений возникает зона проявления нелинейных свойств материала, в которой распределения напряжений и смещений отличаются от упругого. В схеме квазихрупкого разрушения [220,231] принимается, что зона нелинейных эффектов мала по сравнению с длиной трещины. Это позволяет считать, что и размер данной зоны, и интенсивность пластических деформаций в ней целиком контролируются коэффициентом интенсивности напряжений, пределом текучести и коэффициентом упрочнения, а поле напряжений вокруг пластической области описывается асимптотическими формулами (8.40).  [c.330]

Показатель степени в уравнении (4.38) представляет собой последовательность чисел, каждое из которых соответствует определенному напряженному состоянию материала. Это означает, что перед вершиной усталостной трещины напряженное состояние меняется не непрерывно от цикла к циклу нагружения, а в соответствии с определенным законом упорядоченного перехода от одного уровня стеснения пластической деформации к другому. Соотношение (4.37) следует из экспериментов Белла по анализу упругого поведения материала при растяжении в области малых деформаций [81]. Напряжения и деформации сдвига в области малых деформаций претерпевают ряд дискретных переходов через критические точки, которые указывают на квантование величины модуля упругости. Последовательность его величин при малых деформациях представляет собой упорядоченный ряд дискретных значений. Поэтому перед распространяющейся усталостной трещиной вне зоны пластической деформации и внутри зоны в пределах объема, где исчерпана пластическая деформация, реализуется ряд дискретных переходов от одной величины степени стеснения пласти-  [c.205]


На участке сечения в зоне датчиков Д-56 и Д-76 в упругой стадии работы оболочки верхняя и нижняя ее грани были растянуты. После приложения нагрузки, равной 10 000 Н (рис. 3.33), деформации растяжения верхней грани оболочки в этой зоне уменьшились, что связано с образованием трещины в месте примыкания полки к ребрам от действия положительных моментов.  [c.246]

Основные закономерности распределения усилий по виткам резьбы при однократном нагружении в упругой области рассмотрены в работах [1, 7, 15]. Появление пластических деформаций в наиболее нагруженных витках резьбы существенно влияет на перераспределение интенсивности нагрузки в наиболее нагруженных витках. Измерение деформаций, выполненное малобазными тензорезисторами в специальных неглубоких пазах на нарезанной части шпилек, показало, что с переходом от упругой стадии деформирования витков к упругопластической происходит относительная разгрузка (до 20—30%) в зоне первых наиболее напряженных витков. На характер перераспределения усилий по виткам резьбы, находящихся в сопряжении, влияют протекающие процессы разрушения. В зависимости от конструктивного исполнения усталостные трещины, зародившиеся в наиболее нагруженных витках резьбы, развиваются в длину Ь) и глубины (/), ослабляя поперечные сечения (см. рис. 10.4, б, в).  [c.208]

Характерно, что малоцикловые повреждения развиваются, как правило, в зонах концентрации напряжений (рис. 1.2) около отверстий, в вершине углового шва, в замковом соединении и отверстий дисков турбомашин [5, 100]. В типичных зонах концентрации напряжений при допускаемых современными методами расчета на прочность номинальных напряжениях развиваются значительные местные упругие и необратимые деформации. Сочетание механического и интенсивного теплового нагружений (7 = 200... 1000° С) приводит к образованию трещин. При интенсивном тепловом воздействии малоцикловые разрушения имеют вид сетки термоусталостных трещин, например, в элементах проточной части авиадвигателя (рабочие и сопловые лопатки, камеры сгорания, элементы форсажной камеры и др.) [10, 75, 100], в элементах конструкций тепловой энергетики [109, 112] и технологическом оборудовании [99, 110].  [c.7]

Основными причинами повреждения барабанов котлов являются высокие номинальные и местные (а = 2-3,5) циклические напряжения от запусков и остановов котлов накопление циклических повреждений от термических напряжений, связанных с пульсациями тепловых потоков и регулированием мощности повышенные остаточные напряжения в зонах приварки труб наличие исходных дефектов как в основном металле, так и в сварных соединениях накопление повреждений от коррозии и деформационного старения. Хрупкое разрушение барабанов паровых котлов может происходить в процессе гидро-испытаний при напряжениях Ниже предела текучести после заварки обнаруженных трещин. Для анализа прочности барабанов котлов в эксплуатации были осуществлены обширные исследования напряжений, деформаций и температур в программных и аварийных режимах, которые выявили условия образования местных упругопластических деформаций, превышающих предельные упругие в 1,5-2 раза. При испытаниях лабораторных образцов, вырезанных из серединных слоев поврежденных барабанов котлов было обнаружено незначительное (до 10%) уменьшение характеристик механических свойств предела текучести, предела прочности и относительного сужения. Было установлено, что наличие окисных пленок существенно (до 40%) снижает сопротивление циклическому разрушению.  [c.74]

Возникающие в местах концентрации напряжений трещины, как правило, распространяются под действием циклических эксплуатационных нагрузок в пластически деформированных зонах. В зависимости от конструктивных форм и абсолютных размеров сечений, температуры, скорости и характера нагружения, механических свойств, уровня начальной дефектности и остаточной напряженности в конструкциях могут возникать хрупкие состояния, характеризуемые весьма низкими (до 0,1 сгт) разрушающими напряжениями. Условия образования и развития хрупких трещин при этом оказываются связанными со стадией развития трещин циклического нагружения. В вершине трещин длительного статического, циклического и хрупкого разрушения в зависимости от номинальной напряженности и размеров трещин возникают местные упругопластические деформации соответствующего уровня. Таким образом, оценка несущей способности и обоснование надежности элементов машин и конструкций должны осуществляться на основе анализа кинетики местных упругих и упругопластических деформаций, статистики эксплуатационной нагруженности, энергетических и силовых деформационных критериев разрушения.  [c.78]

Соотношения (7.19в) получены [29] в предположении наличия в зоне вершины кольцевой трещины условий плоской деформации в результате решения краевой задачи теории упругости. Однако, согласно решению Г. Нейбера [35], условия плоской деформации реализуются для образцов с малой глубиной трещины, и с увеличением й/О объемность напряженного состояния повышается. Изменение жесткости напряженного состояния при варьировании й / О приводит к изменению условий начала пластического деформирования в вершине надреза (трещины), так как величина предела текучести а.р является функцией параметров жесткости напряженного состояния. В связи с этим условия (7.19в) следует считать необходимыми, но не достаточными для получения величин KJ(,, если последние рассматривать как характеристику материала, а не образца.  [c.217]


Для описания условий разрушения на стадии развития трещин при циклическом нагружении получили широкое распространение критерии линейной и нелинейной механики разрушения. В упругой области или при наличии малых пластических зон в вершине трещины наиболее широко используются силовые (коэффициент интенсивности напряжений п, щ) и энергетические (энергия образования единицы свободной поверхности у или энергия продвижения трещины на единицу длины б), а в случае развитых пластических деформаций (размер пластической зоны в вершине трещины соизмерим с ее длиной) применяются деформационные (критическое раскрытие трещины, предельная деформация в вершине трещины, коэффициент интенсивности деформаций, размер пластической зоны) и энергетические (/-интеграл) критерии.  [c.26]

Попытки распространить гюлучеиные в теории упругости решения краевых вадач для тел е траншами на случай образования paBjaHiejibHO небольших 80И пластичности, размеры которых меньше размеров трещин, в первую очередь связаны с предложеайсы Д. Ирвина определять фиктивную длину трещины как сумму фактической длины трещины и радиуса пластической зоны. При этом радиус для пластической зоны получают из упругого решения, приравнивая напряжения (в уравнении для описания распределения напряжении у вершины трещины) к пределу текучести для идеально упругопластического материала или материала со степенным упрочнением. Эти подходы к оценке роли местных пластических деформаций в зонах трещин позволили использовать основные соотношения линейной механики разрушения при номинальных напряжениях по неослабленному сечению до 0,7 от предела текучести и о ослабленному — до 0,8—0,9 от предела текучести.  [c.35]

Упругие решения для определения напряжений, деформаций и перемещений в зонах трещин в связи с возникновением клинообразных областей пластических деформаций на продолжении трещин были использованы в работах М. Я. Леоноиа, В. В. Панасюка, Д. Даг-дейла. При этом влияние пластической зоны на напряжения в упр то-деформированной пластине с трещиной было проанализировано путем введения в рассмотрение условной трещины с длиной, равной сумме длины трещины и размера пластической зоны. Такая модель позволила получить размер пластической зоны и определить перемещения краев трещины, в том числе и в вершине фактической трещины, т. е. раскрытие трещины. На основе этой модели было рассмотрено распределение напряжений и деформаций в пластической зоне, влияние на него упрочнения материала в случае одноосного и двухосного растяжения и изгиба (применительно к пластинам и тонкостенным сосудам) и сформулированы деформационные критерии разрушения в форме критического раскрытия трещин. Более общие аналитические решения задач об упругопластическом де( юрмировании (для любой степени упрочнения в ие-упругои области) предложены в работах Г. П. Черепанова, В. 3. Партона, Е. М. Морозова, Д. Райса.  [c.36]

При увеличении fx от 0,25 до 0,5 в соответствии с уравнениями (107) отношение Oj/SO p уменьшается от 0,5 до 0. Упругие деформации в зоне трещины определяются по напряжениям на основании закона Гука  [c.38]

Од = 0 и в случае плосетй деформации Oi ==1, 02 = Л, Oj = 0. Эти значения относительных главных напряжений существенно отличаются от полученных для упругой пластины с тревдиной. Вместе с тек аналитическое решение объемных упругопластических задач для трещин пока не найдено. Экспериментальные и теоретические исследования объемного напряженного состояния в неупругой области в зонах трещин показали, что для относительных координат г — = z/ Nl2) (Н — толщина пластины,  [c.61]

Если в пластине внезапно образуется сквозная эллиптическая трещина длиной 2с, расположенная под прямым углом к направлению действующих напряжений, то упругая энергия высвободится в зоне трещины, представляющей собой область эллиптической формы объемо.м 2лс . Высвобождающаяся энергия упругой деформации в пластине составит  [c.98]

Неравномерность усадочной дефор. ацни, способствующая возникновению горячих трещин, наблюдается также при наличии в отливке горячих мест . На рис. IX.8, а схематически показана отливка, испытывающая эатрудненн) ю усадку из-за концевых поперечин. При центральном подводе металла температура, описываемая на рис. IX.8, б линией /, в средней части бруска наиболее высока, отчего предел текучести (линия 2) в этом месте наиболее низок. Когда напряжения в бруске (линия 3) достигают минимума предела текучегтк, в узкой зоне X металл пластически деформируется (линия 4), что уменьшает напряженность системы. Но напряженность двусторонне защемленного бруска в любых условиях одинакова по всей длине Следовательно, за счет пластической деформации металла в зоне х осуществляется разгрузка от упругих напряжений бруска и на всей его остальной длине 1 — х. Другими словами, затрудненная усадка бруска по всей его длине L погашается сосредоточенной деформацией металла на горячем участке, причем относительная деформация металла оказывается тем большей, чем длиннее брусок (или рассматриваемый напряженный участок отливки) это и обусловливает образование та.м горячей трещины.  [c.664]

В элементах конструкций, изготовленных из упругих и упругопластических материалов, трещины создают высокую местную концентрацию напряжений и деформаций в зонах, при.пегающих к вершине. Исследование напряженного и деформированного состояния в зонах трещин имеет существенное значение для анализа критериев разрушения. В общем случае величины напряжений и деформаций в зонах трещин зависят от формы и размеров элементов конструкций, вида напряженного состояния, а также от конфигурации и размеров трещин. А Трещины в элементах конструкций из упругих материалов рас-. сматривают как предельные источники концентрации напряжений — в виде надрезов с бесконечно малыми радиусами закругления в вершине. При этом выражение для местных напряжений  [c.191]

В реальных условиях процесс образования и развития трещин в связи с концентрацией напряжений в вершине трещины всегда сопровождается пластическими деформациями и часть высвобождаемой эн(фгии упругой деформации идет на образование не только поверхностного натяжения, но и узкой пластической зоны в окрестности трещины. Поэтому для пластичных материалов 2уА/ включает в себя и работу по пластическому деформированию, т. е. y = == Тг + 7n.i. где Yr — поверхностное натяжение по Гриффитсу, а Yii.i — удельная энергия образования пластической зоны (Ирвин, Орован).  [c.186]

Однако наличие в вершине трещины остаточных сжимающих напряжений в зоне пластической деформации от предыдущего цикла нагружения препятствует пластическому притуплению ее вершины. Поэтому вершина мезотуннеля в локальной зоне фронта усталостной трещины раскрывается упруго и имеет в сечении треугольную форму [83]. Наблюдаемый по поверхности зигзагообразный характер роста трещины характеризуется многообразием профилей локального фронта (рис. 3.17) (мезотуннели). Поэтому общая закономерность роста трещины с учетом эффекта мезотуннелиро-вания трещины состоит в следующем.  [c.151]


Итак, анализ сигналов акустической эмиссии в процессе раскрытия и закрытия берегов усталостной трещины свидетельствует о реализации ротационных эффектов в зоне пластической деформации и разрушения материала при формировании усталостных бороздок в каждом цикле приложения нагрузки. Остается теперь продемонстрировать в прямом эксперименте факт формирования усталостных бороздок именно на нисходящей ветви нагрузки. Это оказалось возможным сделать на основе представления об упругом и пластическом раскрытии берегов усталостной трещины в мезотуннелях в случае регулярного и нерегулярного нагружения соответственно.  [c.174]

Переход на вторую стадию разрушения в мезотуннелях приводит к регулярному упругому раскрытию вершины трещины в каждом цикле приложения нагрузки, что сопровождается каскадом событий, связанных с формированием усталостных бороздок от дислокационных (единичных) трещин в полуцикле разгрузки материала в результате ротаций объемов материала в пределах зоны пластической деформации. Разрушение перемычек при этом может происходить путем сдвига и путем ротаций объемов материала. На начальной стадии формирования усталостных бороздок ротации в перемычках маловероятны, поскольку масштабный уровень для реализации этого процесса является еще недостаточным, чтобы возможно было формирование сферических частиц. Однако по мере продвижения трещины и нарастания скорости ее роста в результате увеличения коэффициента интенсивности напряжений возникает ситуация, когда формирование сферических частиц становится возможным. Этот переход происходит при достижении следующего масштаба параметров дефектной структуры внутри зоны, разграничивающего мезоуровни I и П.  [c.180]

При увеличении уровня напряжения в каждом последующем цикле нагружения по сравнению с предыдущим циклом процесс формирования усталостных бороздок сопровождается образованием "зоны вытягивания" материала, чему подробное внимание было уделено в главе 3. На начальном этапе возрастания нагрузки в пределах интервала точка 1-точка 2 (см. рис. 3.35) происходит возрастание упругого раскрытия усталостной трещины. При дальнейшем росте нагрузки в цикле (точка 2-точка 3) вследствие пластической деформации происходит вытяжка материала у вершины трещины и ее затупление. При превышении критического коэффициента интенсивности напряжения произойдет статический надрыв материала у вершины трещины и увеличение ее длины осуществится за счет статического проскальзывания. Если величина критического коэффициента интенсивности напряжения не достигнута и напряжение цикла уменьшается (от точки 3 до точки 4), то происходит формирование усталостной бороздки по традиционному механизму ротационной неустойчивости материала. При этом трещина может продолжить дальнейшее продвижение от вершин каскада мезотуннелей затупленной вершины, что будет влиять на размер "зоны вытягивания", наблюдаемой на поверхности излома и на разброс результатов измерений ее размера.  [c.442]

При росте усталостной трещины у ее вершины существует пластическая зона. Упругие напряжения и упругие деформации вне пластической зоны источником раз-рущения не бывают, оно вызывается напряжениями и деформациями именно внутри этой зоны. Поэтому учет пластической деформации в окрестностях усталостной трещины имеет большое значение для описания процесса и установления критериев разрушения. При расчете критерия К с с целью более полного учета малых пластических деформаций Ирвин предложил [4] к характерному размеру усталостной трещины прибавлять ве-  [c.112]

На рис. 12, а показано изменение деформаций при знакопеременном цикле напряжений в области вершины резкого концентратора напряжений. Участок между точками О и 1 соответствует упругопластической деформации в первом полу-цикле растяжения. При этом зона пластической деформации локализована в небольшой области у вершины концентратора, а в остальном материале существуют только упругие деформации. Снятие нагрузки приводит к уменьшению деформации (точка 2), а затем в результате воздействия зон материала, находящихся в упругодеформированном состоянии, к их исчезновению (точка 3). Приложение внешней сжимающей нагрузки вызывает продолжепие петли гистерезиса до точки 4. Разгрузка приводит к полному снятию деформаций (точка 5),, а новое приложение растягивающей нагрузки увеличивает деформации до значения, соответствующего точке 6. Дальнейшее знакопеременное циклическое деформирование приводит к изменению деформации по петле между точками 5 и до тех пор, пока не возникнет усталостная трещина.  [c.28]

Появление знакопеременных напряжений в зоне концентрации сопровождается возникновением циклических деформаций (рис. 1.7, в), превышающих деформации в мембранной зоне (см. рис. 1.7, а и б). Поскольку для зон концентрации напряженний характерны значительные градиенты напряжений и деформаций, а объем упругопластической зоны сравнительно мал, накопление деформаций статической и циклической ползучести ограничено влиянием прилегающих объемов материала модельного элемента, находящихся в упругом состоянии. В этих условиях в зоне концентрации достижение предельного состояния по критериям прочности определяется долей усталостного повреждения, близкой к единице доля квазистатического повреждения вследствие незначительных перераспределения и накопления деформаций, появляющихся только в начальных циклах деформирования, пренебрежимо мала (см. рис. 1.7, в). В этом случае усталостная трещина образуется в переходной от фланца к оболочке зоне, в которой возникают максимальные циклические деформации, обусловленные эффектом концентрации. При этом отсутствуют односторонне накопленные деформации, и трещина распространяется в кольцевом направлении.  [c.11]

Усложнение геометрии исследуемых элементов конструкций по мере снижения их материалоемкости, нелинейное поведение материалов в зонах конструктивной неоднородности, в вершинах исходных технологических дефектов (трещин, пор, включений, подрезов и т. д.), особенно при длительных статических и циклических нагрузках в условиях повышенных температур, ведут наряду с применением традиционных в практике проектирования аналитических методов к существенному развитию и совершенствованию численных методов и самих критериев прочности и разрушения, ориентированных на использование ЭВМ [1]. При этом вместе с нормативными подходами д.ля оценки ма.лоцикловой прочности и долговечности по условным упругим напряжениям (равным произведению местных упругих или упругопластических деформаций на модуль упругости при соответствующей температуре [2]) разрабатываются уточненные методы расчетов, основанные на деформационных критериях разрушения поцикловой кинетики местных упругопластических деформаций и учитывающие температурно-временные эффекты, частоту нагружения, форму циклов [3—7].  [c.253]

Пусть уровень растягивающих напряжений в пластине вдали от трешлны пожерживается неизменным, а фронт трещины продвигается из положения А в положение Ai на расстояние А/. В этом случае происходит увеличение объема ненагруженной зоны около трещины (см. заштрихованную область BiAi i на рис. 24.2). Таким образом, с ростом трещины получаем разгрузку образца с высвобождением некоторой части ДП запасенной ранее в нем потенциальной энергии упругой деформации. Следовательно, в этом случае, процесс роста трещины  [c.416]

Рекомендации распространяются на сварные соединения, выполненные электродуговой, электронно-лучевой, электрощлаковой и контактной сваркой платшением, и устанавливают методы их испытаний для случаев, когда при одинаковых значениях модуля упругости пределы текучести и прочности металла сварных швов превосходят соответствующие показатели основного материала. При этом большое значение имеет выбор зоны создания исходного дефекта (металл шва, зона сплавления, термического влияния, основной металл), а также наличие термопластических деформаций и остаточных напряжений в вершине трещины, обусловленных процессом сварки.  [c.17]


Смотреть страницы где упоминается термин Деформации упругие в зоне трещин : [c.106]    [c.23]    [c.138]    [c.144]    [c.43]    [c.71]    [c.173]    [c.146]    [c.51]    [c.94]    [c.63]    [c.195]   
Расчеты деталей машин и конструкций на прочность и долговечность (1985) -- [ c.38 ]



ПОИСК



Деформация упругая

Зона деформации

Зона упругая

Зона упругой деформации

Зона упругости



© 2025 Mash-xxl.info Реклама на сайте