Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реологическое разрушение

Повреждение, обусловленное интенсивным порообразованием по границам зерен в материале, может приводить к значительному его разрыхлению. В этом случае проведение независимого (несвязного) анализа НДС и развития повреждений в материале дает значительные погрешности. Например, отсутствие учета разрыхления в определенных случаях приводит к существенному занижению скорости деформации ползучести и к снижению скорости накопления собственно кавитационных повреждений. В настоящее время связный анализ НДС и повреждаемости базируется в основном на феноменологических подходах, когда в реологические уравнения среды вводится параметр D, а в качестве разрушения принимается условие D = 1 [47, 50, 95, 194, 258, 259]. Дать физическую интерпретацию параметру D достаточно трудно, так как его чувствительность к факторам, определяющим развитие межзеренного повреждения, априорно предопределена той или иной феноменологической схемой. Так, во многих моделях предполагается, что D зависит только от второго инварианта тензора напряжений и деформаций и тем самым исключаются ситуации, когда повреждаемость и, как следствие, кинетика деформаций (при наличии связного анализа НДС и повреждения) являются функциями жесткости напряженного состояния.  [c.168]


Изучение механического поведения материалов при циклическом деформировании в условиях нормальных, повышенных и высоких температур в изотермических и неизотермических случаях нагружения. Это направление охватывает сопротивление деформированию и разрушению (по моменту образования трещины) с разработкой критериев накопления квазистатических и усталостных повреждений при однородном напряженном состоянии и уравнений, описывающих закономерности деформирования без учета и с учетом реологических свойств.  [c.4]

Для расчетной реализации деформационно-кинетических критериев длительного малоциклового разрушения, помимо характеристик предельных деформаций, необходимо знать изменение необратимой и односторонне накопленной деформации по числу циклов и во времени. При этом специфика исследования деформационных свойств при высоких температурах связана с возможным влиянием реологических характеристик и в соответствии с этим со значением, которое приобретают скорость и время циклического деформирования, наличие или отсутствие длительных высокотемпературных выдержек под напряжением и без, характерных для условий работы высоконагруженных элементов конструкций.  [c.85]

Повышенные прочностные характеристики данных материалов заметно снижаются при нагреве и низкотемпературном старений. На реологические свойства аморфных сплавов существенное влияние оказывают малейшие изменения структуры, связанные с химическим составом и условиями получения аморфных композиций. В настоящее время многое еще не ясно в вопросах природы атомных связей, реологических свойств и механизма разрушения данных материалов.  [c.37]

В монографии представлены результаты исследования механического поведения конструкционных материалов под действием импульсных нагрузок ударного и взрывного характера. Рассмотрена связь процессов нагружения и деформирования материала при одноосном напряженном состоянии. Описаны оригинальные методики и средства квазистатических испытаний на растяжение со скоростями до 950 м/с. Приведены результаты испытаний ряда металлических материалов и реологическая модель их механического поведения учитывающая влияние на сопротивление скорости деформации. Исследовано упруго-пластическое деформирование и разрушение материала в плоских волнах нагрузки. Описаны новые методики и изложены результаты экспериментальных исследований зависимости характеристик ударной сжимаемости н сопротивления пластическому сдвигу за фронтом плоской волны от ее интенсивности, связи силовых и временных характеристик откольной прочности.  [c.2]


В зависимости от конкретных условий материал соударяющихся тел может работать в различных стадиях — упругой, упруго-пластической, пластической. Указанные стадии работы материала могут захватывать целиком соударяющиеся тела или части этих тел. Часто граница между областями упругой и не-упругой работы лежит вблизи контакта тел. Может быть и такая ситуация, при которой происходит разрушение (локальное или общее) одного или обоих соударяющихся тел. В ряде случаев на характер удара существенное влияние оказывает вязкость материала, которая учитывается наряду с упругими и (или) пластическими свойствами материала. Итак, исследуя удар и принимая для этого расчетные модели, приходится учитывать силы инерции и реологические свойства материалов соударяющихся тел.  [c.252]

Задачи третьего класса могут быть и такой разновидности, в которой рассматривается местная деформация в зоне контакта соударяющихся тел. В этой зоне реологические свойства модели могут быть иными, чем в остальной части тела. В частности, в области контакта могут развиваться чисто пластические деформации или может происходить хрупкое разрушение, в то время как остальная часть соударяющихся тел линейно упруга.  [c.255]

Появление новых методов и средств определения структуры, строения и состава поверхностных слоев, возникающих в процессе трения, позволяет расширить научные и прикладные исследования в области граничной смазки, химико-физических свойств присадок к маслам. Важным является получение тонких поверхностных пленок на поверхностях трения под влиянием контактных давлений, температур, временного фактора, химического взаимодействия материалов и смазочных сред, при воздействии окружающей среды. На всех стадиях формирования граничных слоев решающее влияние имеют адсорбционные процессы, кинетика образования и разрушения поверхностных пленок. Целесообразно получить реологические уравнения для граничных смазочных слоев при высоких давлениях, скоростях сдвига, температурах с учетом анизотропии свойств.  [c.197]

К числу основных характеристик материалов, определяющих возможность их применения в конструкциях, относятся сопротивление деформациям и разрушению. Учитывая постоянную тенденцию к понижению запасов прочности и повышению эксплуатационной надежности, наряду с обеспечением сопротивления элементов конструкций упругим деформациям важное значение приобретают анализ и обоснование сопротивления неупругим (упругопластическим и реологическим) деформациям. Допустимость возможности возникновения неупругих деформаций в конструкциях и необходимость их надлежащего учета в расчетах прочности и надежности вытекают из требований минимальной массы конструкций (атомных, авиационных, космических, подводных) и технологических возможностей при изготовлении крупногабаритных конструкций (химические и атомные реакторы, тепловые энергоблоки больших мощностей, супертанкеры, домны-гиганты, нефте-газохранилища и перекачивающие установки). Так как при эксплуатации указанных конструкций обычно имеет место циклическое нестационарное тепловое и механическое нагружение, то для наиболее нагруженных зон этих конструкций становятся характерными процессы циклических упругих и упругопластических деформаций. При таких условиях деформирования образование пре-  [c.67]

Известные в литературе модели хрупкого разрушения тел с трещинами не учитывают изменение реологических свойств материалов в пластически деформируемой зоне у вершины трещины при циклическом нагружении образцов и динамический характер распространения трещины при ее нестабильном развитии и поэтому не позволяют прогнозировать влияние режимов циклического нагружения на характеристики вязкости разрушения и закономерности перехода от усталостного к хрупкому разрушению конструкционных сплавов. Это не позволяет обосновать расчеты предельной несущей способности и долговечности тел с трещинами при циклическом нагружении с учетом стадии их нестабильного развития и ответить на практически важные вопросы в каких случаях циклически нагружаемая конструкция с трещиной разрушится при нагрузках меньших, чем нагрузка, которую она может выдержать при статическом нагружении при каких условиях полное разрушение конструкции произойдет при первом скачке трещины, а при каких — после определенного числа скачков.  [c.210]


Выбор полимерной композиции для конкретной цели определяется ее технологическими характеристиками, температурой отверждения и влиянием на свойства композиционного материала. Основными технологическими характеристиками являются вязкость и жизнеспособность содержащей катализатор системы, или, точнее, исходная вязкость и ее изменение во времени. К важным реологическим характеристикам относятся также продолжительность желатинизации и текучесть смолы под действием натяжения при намотке и во время отверждения. Достаточно низкая вязкость очень важна для полной пропитки армирующего материала и удаления захваченного воздуха и летучих растворителей. Для практических целей можно применять композиции с вязкостью при 25 °С в пределах 0,35. .. 1,5 Па-с. При работе с очень жидкими системами возникают проблемы контроля и постоянства содержания смолы. Некоторые волокна, например углеродные, не захватывают достаточного количества смолы. В отдельных случаях смола может мигрировать в наружные слои намотки, оставляя внутренние сухими , что приводит к преждевременному разрушению композита. Недостатками применения слишком вязкой смолы являются распушка волокон в емкости со смолой и в отверстии, через которое они подаются, неравномерное покрытие во-  [c.205]

Принципиально возможны два способа сте-реоЛогической реконструкции — непосредственная и статистическая. Непосредственная реконструкция методом последовательных сечений — построение пространственной. модели структуры на основании изображений ее на последовательных по глубине сечениях — шлифах в металлографическом световом микроскопе (СМ), эмиссионном (ЭМ) или растровом (РЭМ) электронном микроскопе или на репликах в просвечивающем электронном микроскопе (ПЭМ). Последовательные сечения с минимальным шагом получают строго параллельным последовательным механическим или электролитическим полированием образца. Некоторые характеристики пространственной структуры определяют непосредственно на модели, другие — на представляющем ее графе. Непосредственную реконструкцию. методом стереопар проводят в основном для поверхностей разрушения в РЭМ или ПЭМ и частиц, порошковой пробы в РЭМ, На изображениях одного и того же участка структуры, полученных с одинаковым увеличением при двух, различных углах наклона объекта относительно пучка электронов, измеряют горизонтальный параллакс (разность координат идентичных точек на двух изображениях) и на его-основе рассчитывают соответствующие высоты.  [c.73]

Будем полагать, что шаровой тензор напряжений не оказывает влияния на реологические свойства материала (заметим, что sto предположение, обычно принимаемое в теориях неупругого деформирования, непригодно в теориях разрушения, где оно находится в противоречии с опытами). Таким образом, в последующем анализе будут фигурировать лишь девиаторы Sij, г , ри (причем = = Ги Ч- pij). Это позволяет использовать для иллюстрации закономерностей реологического поведения материала девиаторное пространство А. А. Ильюшина, пятимерное (в общем случае) — по числу независимых компонентов симметричного девиатора (с учетом 5ц = 0).  [c.85]

Реологические свойства однопараметрической модели конструкции полностью определяются функциями Q — F (и) к реологической (Ф). При этом существенно различные конструкции могут иметь близкие диаграммы Q = F (и) при отличающихся характерных значениях e ax, определяющих близость к условиям разрушения. Отсюда следуют перспективы построения различных номограмм с использованием серий кривых Ф и F, не связанных с конкретной конструкцией. Их использование позволит ускорить расчет параметров знакопеременной деформации и предельного значения накопленной односторонней деформации для различных конструкций при заданных программах циклического нагружения. Для каждой конкретной конструкции при этом достаточно использовать предварительно найденную функцию F и независимо от этого реологическую функцию ф материала, из которого она изготовлена.  [c.230]

Заметим, однако, что обоснование в теории трещин — вопрос достаточно деликатный наличие стремящихся к нулю расстояний между берегами трещин затрагивает самые основы принципа сплошности, и в связи с этим первостепенное значение приобретает сравнение и анализ результатов, полученных на основе различных реологий и при разном характере геометрических и физических упрощений. Это делает необходимым последовательное изложение основ нелинейной механики сплошных сред, включая различные варианты реологических соотношений, с нацеленностью на разрушение. Представляется целесообразным также рассмотрение математических методов и математического аппарата, приспособленного к исследованию задач теории трещин, и решение характерных типовых задач, способных дать качественное объяснение изучаемому явлению.  [c.6]

Его реологическое уравнение есть (I, г), и условие разрушения соответственно будет  [c.224]

Переходя от качественных рассуждений к количественным, рассмотрим теперь разрушение максвелловской жидкости с реологическим уравнением (IX, б). Ее упругие напряжения релаксируют, и сосуд будет, следовательно, иметь отверстия в дне.  [c.228]

Исходя из реологического уравнения (IX, ж), находим следуюш,ее словие разрушения  [c.229]

Классификации сталей и сплавов, механические характеристики которых рассмотрены, особенностям их структуры и применению посвящена глава А2. В главе АЗ дан краткий обзор обширного массива информации, полученной при экспериментальном изучении реологических и прочностных свойств материалов, проявляемых при основных типах нагружения (кратковременном, длительном, малоцикловом). Рассмотрены и некоторые используемые в практике расчетов на прочность эмпирические (или простейшие феноменологические) описания закономерностей деформирования и разрушения. Феноменологическим теориям пластичности и ползучести посвящена глава А4. Обсуждаются логика развития этих теорий и трудности, возникающие при описании процессов повторно-переменного деформирования произвольного типа.  [c.11]


Оценке долговечности по критерию малоциклового разрушения с учетом формы цикла, определяемой программой нагружения, посвящена глава А6. Рассматриваются модели накопления усталостного и статического повреждения. Предлагаемая кинетическая модель накопления усталостного повреждения органически связана со структурной реологической моделью, рассмотренной в главе А5 в ней используются макроскопические параметры состояния, вытекающие из анализа поведения структурной модели при пропорциональном нагружении.  [c.13]

Описание процессов, приводящих к разрушению,— задача, значительно более сложная, чем моделирование реологических свойств материала. Трудности связаны с существованием инкубационной стадии, которая может не сопровождаться изменением каких-либо наблюдаемых параметров, а также с необходимостью отражения более сильного (по сравнению с процессами деформирования) влияния неоднородности структуры материала, наличия в последней дефектов. В связи с этим большее влияние приобретают случайные факторы.  [c.27]

А6.3.6. Идентификация модели. В отличие от реологической модели при идентификации модели повреждения возникают две последовательные задачи анализ эволюции параметров состояния при заданной программе внешнего воздействия (на основании принципа подобия) и связи в этих условиях числа циклов до разрушения с параметрами внешнего воздействия (через идентифицируемые параметры модели).  [c.231]

В механике разрушения наметились два подхода к анализу медленного роста трещин. При первом (микроструктурном) подходе главное внимание уделяют кннетике микроразрушений в малой концевой зоне трещины, описывая ее либо уравнениями химической кинетики, либо кинетической теорией прочности С. Н. Журкова. При этом считают, что реологические свойства материала проявляются только в малой концевой зоне трещины, а вне трещины материал упругий. Во втором (феноменологическом) подходе к изучению кинетики роста трещин во времени с учетом реологических характеристик материала методами механики сплошной среды исследуют развитие трещины или в вязко-упругой среде, или в материале с накапливающимися малыми повреяедениями.  [c.299]

В испытаниях на термическую усталость с варьируемой жесткостью нагружения [4,5, 10] это связано прежде всего с режимом неизотермического малоциклового нагружения (жесткость нагружения, уровень максимальной температуры цикла, скорость нагрева и охлаждения, длительность выдержки) и определяется различным сопротивлением статическому и циклическому деформированию частей образца, нагретых в разной степени из-за продольного градиента температур, и протеканием реологических процессов на этапе выдержки при высокой температуре [4, 10]. На рис. 4, б показано, что зффект одностороннего накопления деформаций существенно проявляется в характерной для малоцикловой усталости области чисел циклов (до 10 ) и в определенных условиях (большая жесткость нагруяшния — до 240 Т/см и длительная выдержка — до 60 мин), возможно накопление перед разрушением деформаций, близких к величинам статического однократного разрыва (кривые 7,5, 5) при соответствующем времени деформирования в условиях неизотермического нагружения. При этом реализуется смешанный или квазистатический (длительный статический) характер малоциклового разрушения.  [c.40]

Для исследования химического сопротивления полимерных материалов необходимо глубокое изучение закономерностей и механизмов протекающих процессов механическими, физическими, химическими, структурными и другими методами. Работосиособность пластмасс с различными механическими и реологическими свойствами для изготовления силовых конструкций, применяемых в химическом аппаратостроеиии, должна прогнозироваться либо по предельно допустимым напряжениям, либо ио предельно допустимым деформациям. Для материалов на полимерной основе вр)еменная зависимость прочности и ползучести имеет ярко выраженный характер, что говорит в пользу кинетического подхода к исследованию процессов деформации и разрушения.  [c.43]

Хювало исследования их прочности. Были получены реологические закономерности деформирования и темнературно-временн е зависимости характеристик прочности для анизотропных стеклопластиков, начаты исследования до критериям прочности в связи с видом напряженного состояния, использованы статистические представления для оценки вероятности разрушения, учета влияния при этом абсолютных размеров и цикличности нагружения.  [c.43]

Для характеристики процесса накопления односторонних деформаций, определяющих в соответствии с деформационно-кинетическим критерием разрушения долю квазистатических повреждений при термоциклическом нагружении, важен анализ реологических эффектов и в исследуемых цилиндрических корпусах при вьвдержке.  [c.229]

В заключение добавим, что, хотя в данном подходе ползучесть п кратковременная неупругая деформация описываются единой реологической функцией, при необходимости можно различать неупругую деформацию, происходящую с большой скоростью (при высоких напряжениях), и деформацию, относительно медленно развивающуюся во времени. Это бывает удобно при реализации расчетов конструкций на основе соответствующих вычислительных процедур, а также в связи с построением критерия разрушения материала. Первая часть неупругой деформации происходит в основном вследствие внутризеренных сдвигов, а вторая — сдвигов по границам зерен. Именно с этим может быть связано независимое накопление двух различных мер иоврежденности среды, которое отмечалось в некоторых экспериментах.  [c.190]

С целью регулирования степени тиксотропности, необходимой для получения системы с заданными свойствами, важно знать кинетику тиксотропного восстановления структуры материала после ее разрушения. Обычно для этого на ротационном вискозиметре, позволяющем исследовать реологические параметры системы в широком интервале скоростей деформации, разрушают структуру материала при высокой скорости деформации в течение определенно-  [c.14]

На основе оригинальных экспериментальных исследований обоснованы скачкообразный характер развитая усталостных трещин для циклически разупрочняю-щихся сталей в охрупчепном состоянии и существенное снижение характеристик, вязкости разрушения этих сталей при циклическом нагружении по сравнению со статическим нагружением. Описана модель, позволяющая прогнозировать влияние цикличности нагружения на характеристики вязкости разрушения по реологическим-свойствам материалов и прогнозировать долговечность с учетом стадии нестабильного развития трещин.  [c.5]

Обобщение результатов исследований закономерностей стабильного и нестабильного развития усталостных трещин, характеристик вязкости разрушения конструкционных сплавов различных классов при статическом, циклическом и динамическом нагружениях при различных температурах и вариантах термической обработки образцов различных толщин, изложенных выше, позволило предложить и обосновать модель разрушения конструкционных сплавов с трещинами при циклическом нагружении fl65], которая учитывает влияние цикличности нагружения на изменение реологических свойств материала в пластически деформируемой зоне у вершины трещины и динамический характер распространения трещины после ее страгивания. Модель позволяет прогнозировать соотношения значений характеристик вязкости разрушения при различных видах нагружения и кинетику нестабильного развития усталостных трещин для материалов различных классов в зависимости от режимов циклического нагружения.  [c.210]


С позиции практического использования водорастворимые полимеры ],елят на две группы — сохраняющие растюримость в воде и теряющие растворимость при изготовлении изделий. В первом случае полимеры, как правило, применяют в виде растворов. Основные направления использования растворов - регулирование свойств дисперсных систем (стабилизация или разрушение) и регулирование реологических свойств жидкостей (загустители или агенты для снижения гидравлического сопротивления при турбулентном течении). Применение водорастворимых полимеров в качестве клеев, адгезивов, связующих, а также упаковочных материалов связано с потерей растворимости в процессе переработки.  [c.609]

Очень важным следствием из теории А. И. Леонова является возможность расчета релаксационного спектра по кривым течения. В частности, из этой теории вытекает, что определение точки перегиба на кривой зависимости (Ig 7) позволяет легко найти максимум релаксационной функции N (s), где N — функция распределения частот релаксации (величин обратных временам релаксации), так как у = as, причем а — постоянный коэффициент. Можно легко показать, что N (s) = — (as) т) (as), где (as) — первая производная вязкости по релаксационной частоте. Точка перегиба на кривой (Ig у) отвечает условию dN/ds = 0. Также просто находится время / после начала опыта в условиях у = = onst, когда наступает интенсивное разрушение структуры материалов. Оказывается, что / = а/у. Следовательно, в согласии с опытными данными возрастание скорости деформации приводит к быстрому уменьшению времени достижения максимума на кривых т (/) при у — onst. Рассматриваемая теория позволяет определить достижение максимума функции xjxy = / (у) и многие другие важные реологические характеристики материалов. Отсюда следует, что измерение вязкости у материалов с неньютоновским поведением важно отнюдь не только для расчета процессов их течения, но имеет фундаментальное значение для характеристики их реологических свойств.  [c.125]

Варианты неупругих реологических соотношений. Исследования по теории разрушений будут суш,ественно неполными, если ограничиться лишь рассмотрением упругих сред. Наметим возможные обобп ения.  [c.36]

В настоящем параграфе предлагается вариант реологических соотношений, ориентированный на penienne проблемы разрушения металлов и учитывающий вышеизложенные сообрая ения. Будем вести исследование на основе моментной теории сплошных сред со стесненным вращением, идентифицируя со с поворотом зерен (или субзереп).  [c.117]

В целом реология приняла единый подход, концентрируя свое внимание на исследовании сдвиговых деформаций и отождествляя течение со сдвигом, развиваюш имся во времеш . Эта точка зрения является слишком узкой. Более детальные наблюдения показали, что хотя различные реологические свойства более очевидны при сдвиге, они также имеют место и при объемной деформации. Это обстоятельство уже вынудило сделать оговорки. В параграфе 9 главы XI остаточная деформация уплотнения определена как вид остаточной деформации, который будет проявляться и при всестороннем равномерном давлении и поэтому будет явлением объемной пластичности и объемной прочности. Генки (1924 г.), представления которого о пластическом течении здесь приняты и объяснены в главе VI, выразил свою точку зрения так Ясно, что гидростатическое сжатие или растяжение не может оказывать влияния на пластическое течение. Если в экспериментах обнаруживается такой эффект, он должен быть отнесен за счет возмущений, производимых невидимыми явлениями разрушения . Утверждение, сделанное во втором предложении, относится к материалам, имеющим полости или поры, и которые могут локально разрушаться вблизи них, где происходит концентрация напряжений. Но второе предло жение противоречит в некоторой степени первому. Верно, что остаточная деформация уплотнения не есть случай пластического течения, так как они появляются практически одновременно с нагрузкой.  [c.202]

Реологический анализ имеет своей целью получение сведений о структуре дисперсионной системы из результатов реологических измерений. На примере вискозиметрических измерений растворов резины в толуоле при различных скоростях сдвига для различных температур и концентраций показано, как применение критерия из табл. XV. 1 приводит к предположению, что для концентраций больше чем 0,3% дисперсная фаза существует в виде разрозненных молекул, иммобилизующих раствор внутримолекулярным образом, а при концентрациях выше чем 0,4% существует в виде неупорядоченных совокупностей молекул или мицелл, которые связаны совместно силами сцепления, иммобилизующими раствор межмолекулярным или межмицелльным образом. Освобождение раствора благодаря частичному разрушению агрегатов или частичному распрямлению искривленных молекул вызывает явление структурной вязкости, ярко выраженное в первом случае и находящееся под вопросом во втором.  [c.273]

Повышение предела текучести в области упрочнения материала происходит благодаря разрушению крупных кристаллов на мелкие. Для гипотетического иоликристаллического вещества, состоящего из больших кристаллов одного и того же размера,, которые при сдвиге превращаются в кристаллы минимальных размеров, предлагается реологическое уравнение  [c.343]

Реологические свойства IT. Наряду с упругой и высокоэластич. деформацией при определ. условиях в II. развиваются необратимые деформации, с к-рыми связан определ. комплекс реоло-гич. св-в. Обычно исследования течения ведутся при деформации сдвига, роже hj)h растяжении или сжатии. При малых напряжениях линейные П. (каучуки, пластмассы) начинают заметно течь выше темп-ры текучести, а пространственно-структурированные — не текучи вплоть до темп-ры химич. распада пространств, сетки. При достаточно больших напряжениях все II. могут течь при любых темн-рах. Механизмы течения в обоих случаях совершенно различны. В связи с этим все процессы вязкого течения П. распадаются па 2 осн. вида, в дальнейшем условно называемых физическим течением (только у линейных П.), к-рое происходит путем перемещения сегментов макромолекул в /гаправлении вязкого потока без разрушения молекул и изменений химич. структуры П., и химическим течением (как у линейных, так и пространствепно-структурпрованных, или сеточных. П.).  [c.20]

Используя феноменологический подход, исследователи не рассматривают какие-либо конкретные модели и механизмы микропроцессов, происходящих при пластической деформации металлов и сплавов. На основании опытов по нагружению макрообразцов (М-опытов по терминологии А. А. Ильюшина) устанавливаются конкретные реологический свойства, способность к пластической деформации без разрушения сплошной среды — абстрактной модели реального металла. В результате исследование процессов пла- стической деформации обрабатываемого тела сводится к анализу решения некоторой краевой задачи математической физики, т. е. к изучению распределения напряжений и деформаций, температурных полей, условий разрушения.  [c.257]


Смотреть страницы где упоминается термин Реологическое разрушение : [c.369]    [c.379]    [c.6]    [c.7]    [c.10]    [c.250]    [c.8]    [c.230]    [c.65]    [c.109]    [c.154]   
Деформация и течение Введение в реологию (1963) -- [ c.369 ]



ПОИСК



Реологические соотношения, расчет напряжений, варианты моделирования расслоения и разрушения



© 2025 Mash-xxl.info Реклама на сайте