Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оболочек теория линеаризованная

Оболочек теория линеаризованная 269  [c.534]

Техническая теория гибких упругопластических оболочек развита в работах [24, 26] техническая теория ползучести тонких оболочек при малых прогибах с использованием деформационной теории и гипотезы старения — в работах [8, 9]. Дифференциальные уравнения ползучести гибких пологих оболочек с физическими соотношениями, линеаризованными относительно основного безмоментного состояния, приведены в работе [18].  [c.16]


Приведенные выше соотношения явились основой вычислительных программ численного решения задач о напряженных, деформированных и предельных состояниях оболочечных конструкций, подверженных длительным статическим и малоцикловым воздействиям в условиях повышенных температур [8, 3, 15]. Разработанная в [15] программа исследования прочности сильфонов основана на линеаризованных уравнениях теории оболочек и уравнениях состояния (8.17). Для учета физической нелинейности материала оболочки используется метод переменных параметров упругости [10].  [c.160]

Для решения задачи о комбинированном нагружении цилиндрической оболочки, подкрепленной гофром й шарнирно опертой по торцам на упругие кольца жесткостью ЕТ) , воспользуемся полубезмоментной теорией оболочек. Линеаризованные уравнения этой теории можно получить, относя уравнения гл. 9.6 к деформированной поверхности, как это принято в геометрически нелинейных теориях (см. гл. 9.4) [1].  [c.166]

Техническая теория справедлива при малых деформациях и основывается на линеаризованных соотношениях. Используется метод расчленения напряженно-деформированного состояния на основное и дополнительное. Наиболее простое основное состояние корректируется дополнительным на отдельных участках оболочки.  [c.188]

Т2 - -pR, S 0=0. Для не слишком коротких оболочек простое и надежное решение дает полубезмоментная теория оболочек (см. п. 9.6.3), Рассмотрев условия равновесия элемента оболочки в отклоненном от начального состояния и удерживая только первые степени бифуркационных перемещений, можно вместо разрешающего уравнения (9.6.17) получить однородное линеаризованное уравнение  [c.212]

Рассмотрим критерии подобия в задачах упругой устойчивости оболочек при аффинном соответствии модели и натуры. С этой целью воспользуемся дифференциальными уравнениями устойчивости, которые следуют из энергетического критерия (7.2) при независимом варьировании бифуркационных смещений и использовании гипотез Кирхгофа—Лява совместно с допущениями теории пологих оболочек. Эти же уравнения могут быть получены путем линеаризации уравнений нелинейной теории пологих оболочек относительно дополнительных перемещений и носят название линеаризованных уравнений. Указанные уравнения имеют вид 122, 59]  [c.139]


Выведем для этой задачи уравнения линеаризованной теории тонких оболочек, основанной на гипотезе Кирхгофа—Лява. Принцип виртуальной работы для этой задачи записывается следующим образом (см. уравнение (4.84))  [c.269]

Линеаризованная теория тонких оболочек, учитывающая деформации поперечного сдвига  [c.278]

Вновь рассмотрим задачу, описанную в 9.4, и выведем для нее линеаризованные уравнения теории тонких оболочек, учитывающей деформации поперечного сдвига, считая, что внешние силы  [c.278]

В главе приведены вывод формулы ш, основные соотношения нелинейной теории оболочек вращения, уравнения равновесия оболочки, односторонне и осесимметрично взаимодействующей со штампом. Даны канонические системы исходных и линеаризованных уравнений для оболочки и конструкции. Рассмотрена теория осевого смещения кольцевых штампов, кинематически связанных с оболочкой, изложены сведения о программе для ЭВМ.  [c.27]

Линеаризованные слагаемые для теории Тимошенко представлены формулами (VI.42), (VI.43). Выполним по (VI.39) линеаризацию соотношений (VI.24), входящих в уравнения слоистых оболочек, основанные на применении к слоям классической теории. Тогда (s = 3, 4) будут представлены  [c.114]

Здесь, на основе концепции Эйлера о разветвлении форм равновесия и выведенных в предыдущих параграфах нелинейных уравнениях изгиба, устанавливаются линеаризованные дифференциальные уравнения устойчивости многослойных композитных анизотропных оболочек. Подробное изложение этой концепции и методики получения пространственных линеаризованных уравнений устойчивости из нелинейных уравнений теории упругости приведено в монографии [206 ]. Для однородных изотропных абсолютно жестких на поперечные сдвиги и обжатие оболочек эти вопросы достаточно полно рассмотрены, например, в монографиях [85, 104, 189], а для многослойных анизотропных оболочек с ограниченной поперечной сдвиговой жесткостью — в монографиях [52, 60, 116].  [c.59]

Указанные замкнутые системы линеаризованных уравнений статики и устойчивости слоистых упругих тонких пологих (1 + h/R 1) оболочек ниже составлены в системе координат, связанной с линиями кривизны отсчетной поверхности Q. Сведения о вариантах уравнений представлены лишь в том минимальном объеме, в каком они используются в дальнейшем. С полным изложением этих вопросов, включающим в себя уравнения динамики, уравнения нелинейной теории и др., заинтересованный читатель может ознакомиться по цитированным источникам.  [c.82]

Численное определение матрицы Грина линеаризованных краевых задач теории слоистых оболочек вращения методом инвариантного погружения  [c.210]

Параллельно с использованием упрощенных аэродинамических формул задачи устойчивости пластин и оболочек в потоке газа рассматривались с применением линеаризованной потенциальной теории. В. В. Болотин  [c.357]

Уравнение устойчивости тороидальной оболочки (рис. 1), полученное по линеаризованным зависимостям теории оболочек малого прогиба, имеет вид  [c.243]

Известна классификация приближенных уравнений нелинейной теории оболочек Х.М. Муштари и К.З. Галимова [24]. В ее основу положены оценки порядка линеаризованного вектора поворота Ф = - 2 1 + 162 + л и Выделены тир 1руппы нелинейных задач, характеризуемых слабым изгибом l),  [c.137]

Линеаризованные физически нелинейные задачи для гладких и ребристых оболочек. Учет приобретенной анизотропии на примере линеарнзапни физически нелинейных задач теории малых упруго-пластических деформаций при использовании метода переменных параметров упругости рассмотрен в [П. 3]. В этом случае связь между компонентами усилий и деформаций для гладких и ребристых оболочек можно представить в форме (I 20) гл. 4 Д.ЧЯ неоднородных анизотропных оболочек. В этих уравнениях коэффициенты упругости являются функциями напряженно-деформированного состояния. Прн решении данной нелинейной задачи методом переменных параметров упругости физические соотношения на каждом шаге линеаризации сохраняют форму (1.20) с постоянными коэффициентами упругости. Часть коэффициентов в эти.х соотношениях обращается в нуль, а вид других зависит от интегральных физических характеристик сечения (например, [П. 6]). Уравнения равновесия и геометрические завнснмостн, естественно, остаются одинаковыми для теории малых упруго-пластических деформаций н линейной теории неоднородных анизотропных оболочек.  [c.219]


Из анализа обзора [85] следует, что дискретное продолжение решения геометрически нелинейных задач теории пластин и пологих оболочек впервые применил М. С. Корнишин [148]. Для изучения гибких упругопластических оболочек этот подход реализован в [ПЗ], где в качестве параметра введен прогиб оболочки в центре, что позволило исключить трудности получения решения в окрестности предельных точек. Для-нх прямого определения (без построения траектории состояний равновесия) проведено продолжение решения по геометрическому параметру подъемистости оболочки, система уравнений равновесия дополнена уравнением det /) = О, где J — матрица линеаризованной системы алгебраических уравнений, полученной методом Ритца.  [c.25]

Центральное место в монографии занимает третья глава, в которой на основе единой кинематической гипотезы, позволяющей учесть поперечные сдвиговые деформации, удовлетворить условиям межслоевого контакта и условиям на граничных поверхностях, из принципа возможных перемещений получены нелинейные тензорные уравнения статики упругих анизотропных слоистых оболочек и сформулированы соответствующие им краевые условия. Указаны предельные переходы к уравнениям классической теории оболочек и ортотропной оболочки, предоставляющим возможность учета эффектов сдвига в одном направлении ортотропии (армирования) и неучета — в другом. Приведены упрощенные уравнения, пригодные для расчета пологих оболочек. Линеаризованные уравнения статической устойчивости слоистых оболочек, основанные на концепции Эйлера о разветвлении форм равновесия, сформулированы в параграфе 3.4, а в параграфе 3.5 из принципа виртуальных работ эластокинетики выведены нелинейные уравнения динамики. Здесь же приведены линеаризованные уравнения динамической устойчивости слоистых оболочек и пластин, обсуждены предельные переходы и упрощения, подобные тем, какие были сделаны в задаче статики. Параграф 3.5 посвящен формулировке неклассических уравнений многослойных оболочек в системе координат, связанной с линиями кривизн поверхности приведения. В этой же системе координат составлены уравнения, описывающие осесимметричную деформацию слоистой ортотропной оболочки вращения. В параграфе 3.7 описаны  [c.12]

Применение уравнений трехмерной теории упругости к исследованию устойчивости упругих тел с учетом изменения их граничных поверхностей было предложено А.Ю. Ишлинским и Л.С. Лейбензоном [5, 6]. В трехмерной линеаризованной постановке в работах А. П. Гузя и его учеников [2, 7, 8, 9] были получены решения задач устойчивости анизотропных элементов конструкций, которые послужили основой для оценки точности различных прикладных теорий, использующихся в расчетной практике. Оказалось, что теория оболочек, в которой деформации поперечного сдвига учитываются в соответствии с гипотезой Тимошенко, позволяет находить критические нагрузки с незначительной погрешностью. Эта оценка относится и к таким интегральным характеристикам, как низшие частоты свободных колебаний оболочки из КМ. В то же время решение уравнений теории оболочек типа Тимошенко менее трудоемко, чем уравнений теории упругости, особенно в случае оболочек сложной геометрии. Такими, в частности, являются цилиндрические оболочки с волнообразной срединной поверхностью, которые при большом количестве волн принято называть гофрированными. Устойчивость последних рассматривалась в работах [10, 11] путем замены их эквивалентными ортотропными. Хотя экспериментальные данные обнаруживали более высокую эффективность гофрированных оболочек [10], приближенное дискретное решение не подтвердило возможности увеличения критических нагрузок за счет придания профилю поперечного сечения волнообразного характера. Недостатков приближенного подхода удалось избежать в работах [12-14], где устойчивость гофрированных оболочек рассматривалась с учетом изменяемости геометрических параметров по направляющей. Из проведенных авторами этих работ исследований вытекает, что при равновозможности общей и локальной форм потери  [c.105]

Краевой эффект в оболочках. Если напряженное состояние в оболочке является в основном бёзмоментным и интенсивность напряжений достаточно велика, напряженное состояние краевого эффекта вблизи закрепленного края может рассчитываться, как поправка к основному напряженному состоянию. Эта идея была реализована И. Г, Терегуловым, который использовал в зоне краевого эффекта уравнения, линеаризованные около основного напряженного состояния, которое считается без-момертным и, следовательно, известным. Теория краевого эффекта при этих предположениях оказывается подобной теории краевого эффекта в упругих оболочках, В качестве иллюстрации была рассмотрена задача о краевом эффекте в цилиндрической круговой оболочке, сжатой в осевом направлении. Краевой эффект в цилиндрической оболочке рассматривался также И, В, Стасенко (1962, 1963).  [c.138]

Линеаризованные уравнения ползучести для пластин были одновременно и независимо получены С. А. Шестериковым (1961) и Л. М. Курши-ным (1961) ряд задач, относящихся к устойчивости пластин и оболочек, на основе линеаризованной теории рассмотрели С. А. Шестериков, Л. М. Куршин, А. П. Кузнецов (1964), И. Г. Терегулов (19ХХ) и другие авторы. При этом использовались те же критерии, которые указаны выше применительно к стержням. Г. В. Иванов (1961) обратил внимание на то, что при обобщении критерия устойчивости на случай неупругих систем существенную роль играет способ перехода из основного состояния в дополнительное, и дал обобщение классического критерия за критическое значение параметра нагружения принимается то наименьшее значение, при котором возможно нетривиальное состояние равновесия при условии, что переход из основного состояния в нетривиальное равновесное состояние осуществляется при выполнении некоторых ограничивающих условий, налагаемых на дополнительные деформации. В задачах ползуче сти роль параметра нагружения играет время.  [c.146]



Смотреть страницы где упоминается термин Оболочек теория линеаризованная : [c.268]    [c.274]    [c.274]    [c.7]    [c.255]    [c.78]    [c.8]    [c.338]   
Вариационные методы в теории упругости и пластичности (1987) -- [ c.269 ]



ПОИСК



Линеаризованная теория

Линеаризованная теория тонких оболочек, осиоваииая на гипотезе Кирхгофа—Лява

Линеаризованная теория тонких оболочек, учитывающая деформации поперечного сдвига

Оболочек теория линеаризованная Маргуэра

Оболочек теория линеаризованная нелинейная

Оболочек теория линеаризованная с учетом поперечного сдвиг

Оболочек теория линеаризованная тонких

Оболочки Теория — См. Теория оболочек

Теория оболочек

Численное определение матрицы Грина линеаризованных краевых задач теории слоистых оболочек вращения методом инвариантного погружения



© 2025 Mash-xxl.info Реклама на сайте