Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газ свободных электронов, теплоемкость

Газ свободных электронов, теплоемкость 177  [c.281]

Примечание для сферических поверхностей постоянной энергии должно выполняться соотношение т/т = у/у ь где уТ — величина электронной удельной теплоемкости, измеренная калориметрическим методом, 7 Г — ее значение для газа свободных электронов той же плотности (7, = 1360 эрг - к для атомного объема V). Точность определения величин т/т и у/у составляет обычно около 0,02, за исключением указанных случаев. Данные по циклотронному резонансу приведены для поликристаллов.  [c.240]


Учет вклада свободных электронов в теплоемкость металлов. По современным представлениям металл рассматривается как совокупность системы положительно заряженных ионов, колеблющихся около их средних положений равновесия в кристаллической решетке, и системы относительно свободных коллективизированных валентных электронов, образующих в металле своеобразный газ.  [c.176]

При обсуждении закона Дюлонга и Пти отмечалось, что если исходить из классических представлений и считать электроны в металле свободными, так же как молекулы идеального газа, подчиняющиеся статистике Максвелла—Больцмана (рис. 6.6), то такой газ электронов имеет большую теплоемкость (с учетом вклада электронов теплоемкость в 1,5 раза больше, чем это следует из закона Дюлонга и Пти) из-за того, что энергия, подводимая  [c.176]

Из всего вышесказанного следует, что тепловую энергию в металле при его нагревании воспринимают не все свободные электроны, как это имеет место для обычного идеального газа, а только те, энергия которых лежит в интервале k T вблизи энергии Ферми. Именно эти электроны и определяют теплоемкость электронного газа.  [c.179]

Это отношение пропорционально температуре, и даже при комнатной температуре (300 К) равно по порядку величины всего лишь 10 . Этим и объясняется тот факт, что свободные электроны при комнатной температуре не вносят вклада в теплоемкость металлов. При температурах значительно более низких, чем комнатная, теплоемкость, обусловленная колебаниями решетки, падает пропорционально Т , а теплоемкость, обусловленная электронным газом, изменяется линейно. Таким образом, при низких температу-  [c.182]

Классические теории предсказывают, что каждый свободный электрон должен иметь теплоемкость, равную Зко/2. Тогда металл с одним Свободны м электроном на атом должен иметь выше температуры Дебая теплоемкость 37,5 Дж/(моль-К) по сравнению с 25 Дж/(моль-К) для неметалла (необходимо учесть, что концентрация электронов в металле составляет около 10 см ). Но эксперименты показывают. что дополнительная теплоемкость электронного газа в металле очень мала и пропорциональна абсолютной температуре. Плотность разрешенных состояний описывается формулой (3.24), если потенциальная энергия электрона внутри металла не меняется. Поэтому в соответствии с равенствами (3.24) и (3. 19) уровень Ферми занимает такое положение, что  [c.108]


Согласно классической теории колебаний кристаллической решетки (гл. I, 9) простые металлы (литий, натрий, калий, цезий, рубидий) должны иметь теплоемкость, равную примерно 25 Дж/(моль-К). Однако в суммарную теплоемкость, кроме колебаний решетки, должны были бы делать вклад и валентные (свободные) электроны, так как их кинетическая энергия при повышении температуры может возрастать. Если каждый электрон дает вклад в теплоемкость независимо от остальных электронов, то его можно рассматривать как атом моноатомного газа и считать его тепловой энергией величину 3/2 коТ. Поэтому следует ожидать, что вклад в теплоемкость от одного электрона равен 3/2ко. Электронная теплоемкость одного моля> электронов должна составить примерно 12,5 Дж/(моль-К), и, следовательно, полная теплоемкость простого одновалентного металла (теплоемкость решетки и электронов) должна бы равняться примерно 37,5 Дж/(моль-К). Эксперименты показывают, что это значение слишком велико наблюдаемые значения теплоемкости почти никогда не превышают 25 Дж/(моль-К).  [c.124]

Если два состояния системы обладают одинаковой энергией, то их часто называют вырожденными. К сожалению, термин вырожденные может иметь два совершенно разных значения. Здесь оно использовано в том смысле, что электронная теплоемкость вырождается (деградирует) по сравнению с ее большим значением, вытекаемым из классических моделей. Ряд других свойств также вырождается в результате квантовых ограничений, поэтому говорят, что в металле имеется сильно вырожденный электронный газ . И в полупроводниках электронный газ может быть как вырожденным, так и невырожденным в зависимости от того, имеется ли достаточное число свободных электронов, чтобы стали существенными квантовые ограничения движения электронов.  [c.126]

Таким образом, результаты расчета физических свойств в приближении свободного электронного газа Ферми позволили достичь значительно большего совпадения рассчитанных и измеренных величин электронной теплоемкости металлов и построить улучшенную теорию связи в кристаллах с учетом принципа неразличимости. Однако многие характеристики металлов все еще не нашли надлежащего объяснения.  [c.54]

При очень больших скоростях потока и при высоких температурах в аэродинамике имеют дело со смесью газов. Например, воздух при температурах до 500 К остается совершенным двухатомным газом, имеющим постоянный молекулярный вес т fn 29 и показатель адиабаты у = 1,405. При дальнейшем росте температуры увеличивается теплоемкость воздуха, что объясняется возбуждением внутренних степеней свободы в молекулах воздуха. Затем с ростом температуры происходит диссоциация воздуха (молекулы распадаются на атомы) при температурах свыше 2000 К распадается молекулярный кислород, при 4000 К и выше существенным становится разложение азота. В диапазоне температур 7000... 10 ООО К начинается процесс ионизации атомов с образованием свободных электронов. Указанные процессы являются весьма энергоемкими, и это обстоятельство необходимо учитывать при расчете течений. Если скорость химических превращений в газовой смеси велика по сравнению со скоростями газодинамических процессов, то смесь находится в химическом равновесии. В этом случае, как уже отмечалось, вместо уравнений переноса i-то компонента следует рассматривать законы действующих масс в виде (1.26).  [c.29]

Таким образом, вследствие того, что при обычных температурах термическому возбуждению подвергается лишь незначительная часть свободных электронов металла, теплоемкость электронного газа составляет единицы процентов от теплоемкости решетки, на что мы уже обращали внимание читателя в 3.9.  [c.135]

Теплоемкость газа из N свободных электронов можно вычислить на основе приведенных результатов, тогда получим  [c.177]

При Т Т свободный электронный газ с постоянным числом электронов не вырожден, и его теплоемкость равна классическому значению  [c.548]


По классической статистике (невырожденный электронный газ) каждый электрон вносил бы в теплоемкость вклад, равный З д/2. Выражение (6.19) показывает, что при сильном вырождении только часть электронов к Т/Ер вносит вклад в теплоемкость. Это понятно, так как при малом повышении температуры свободные состояния, на которые могут перейти электроны, находятся в слое порядка кдТ вблизи Ер.  [c.36]

Из табл. 2 видно, что модель свободных электронов при Ыа равном числу валентных электронов на атом, дает хорошее приближение для всех рассмотренных металлов соответственно их можно назвать веществами типа электронного газа. Из табл. 2 ясно, что эффективная масса гпе в этих металлах не сильно отличается отт. Это означает, что ни периодический потенциал ионов, ни взаимодействие электронов друг с другом или с фононами не оказывают существенного качественного влияния на электронную часть теплоемкости. Количественно влияние всех этих неучтенных взаимодействий действительно оказывается небольшим, и теоретикам еще предстоит понять, почему это так. Столь хорошего соответствия теории с опытом не наблюдается ни для полуметаллов типа В или 5Ь, ни для переходных металлов. В обоих этих случаях влияние периодического потенциала, по-видимому, очень велико и его следует принять во внимание с самого начала, если мы надеемся добиться согласия теории с опытом.  [c.88]

Создание современной электронной теории металлов — заслуга Зоммерфельда [2], который дал новую квантовомеханическую формулировку электронной теории Друде — Лоренца. Теория Зоммерфельда полностью разрешила трудности с теплоемкостью. Другим блестящим успехом современной электронной теории металлов была созданная Паули [3] теория парамагнетизма свободного электронного газа-"  [c.267]

Определить удельную теплоемкость Су и парамагнитную восприимчивость X невырожденного свободного электронного газа. Рассмотреть, как ведут себя эти величины при переходе к классическому пределу высоких температур.  [c.276]

Если рассматривать свободные электроны как классический идеальный газ, то вклад от степеней свободы, связанных с поступательным движением электронов, в Су — молярную теплоемкость при постоянном объеме — будет равен ЗЛ/2 в соответствии с законом о равномерном распределении энергии. Вместе с тем колебания решетки металла обладают ЪЫ — 6 2>М Ма — число Авогадро) степенями свободы на моль и могут рассматриваться как система 3 о гармонических осцилляторов. Считая, что они описываются классической статистикой, получаем вклад колебаний решетки в Су, равный ЪК, а в сумме получаем для атомной теплоемкости металла значение 4,5 К.  [c.287]

Согласно приближению, основанному на модели свободных электронов, валентные электроны свободно движутся по всему объему металла, а ионы металла погружены в электронный газ. Это приближение особенно хорошо применимо к одновалентным металлам и объясняет такие их свойства, как электропроводность и поглощение света. Но пока оно не было изменено в соответствии с положениями квантовой теории, оно не объясняло причин изменения теплоемкости, магнитной восприимчивости и факта существования диэлектриков.  [c.33]

При самых низких температурах, вблизи О К, когда концентрация фононов становится малой, предельная длина свободного пробега <Хэл> определяется дефектами и примесями и не зависит от температуры, тогда теплопроводность пропорциональна теплоемкости электронного газа, т. е. Т.  [c.196]

Наблюдаемая теплоемкость металлов меньше теоретической и такова, как будто электронный газ не поглощает теплоту при нагреве металлического проводника. Эти противоречия удалось преодолеть, рассматривая некоторые положения с позиций квантовой механики. В отличие от классической электронной теории в квантовой механике принимается, что электронный газ в металлах при обычных температурах находится в состоянии вырождения, В этом состоянии энергия электронного газа почти не зависит от температуры, как это показано на рис. 7-1, т. е. тепловое движение почти не изменяет энергию электронов. Поэтому на нагрев электронного газа теплота не затрачивается, что и обнаруживается при измерении теплоемкости металлов. В состояние, аналогичное обычным газам, электронный газ приходит при температуре порядка тысяч кельвинов. Представляя металл как систему, в которой положительные ионы скрепляются посредством свободно движущихся электронов, легко понять природу всех основных свойств металлов пластичности, ковкости, хорошей теплопроводности и высокой электропроводности.  [c.190]

В любом случае теплоемкость электронного газа в модели СЭТФ линейно убывает с уменьшением температуры и при комнатных, скажем, температурах составляет величину порядка 10- от теплоемкости классического электронного газа. Эти результаты качественно согласуются с экспериментом. Однако оказалось, что количественное согласие наблюдается не для всех металлов. Для переходных металлов (Fe, Мп) предсказываемое теорией значение слишком мало, а для металлов типа Bi и Sb — слишком велико. Таким образом, в отличие от простейшей модели свободных электронов учет принципа Паули для газа свободных электронов позволил качественно объяснить электронную теплоемкость металлов, и это было замечательным успехом данной модели. Однако количественное согласие расчета с экспериментом обнаружено лишь для некоторых групп металлов.  [c.53]

Тепловые свойства диэлектриков и металлов отличаются главным образом величиной теплопроводности. Высокая теплопроводность металлов объясняется участием в переносе теплоты газа свободных электронов, в то время как в твердых диэлектриках теплота распространяется в основном за счет колебаний кристаллической решетки. По величине теплового расширения, а также по величине теплоемкости металлы и диэлектрики качественно не различаются (теплоемкость электронного газа металлов благода-  [c.11]


Э( ктивный потенциал обмена и корреляции имеет смысл также и при рассмотрении атомных систем. Оригинальный подход Кона — Шэма в отличие от рассмотрения, проведенного здесь, не был основан на теории линейного отклика (на этой теории не основывался фактически и метод Слэтера). Однако предположение о медленном изменении, т. е. о малых д, прив ю после минимизации энергии к обменному потенциалу, пропорциональному [/I (г)1 /, где п (г) — полная плотность. С таким обменным потенциалом энергию основного состояния атома можно рассчитать столь же просто, как и в методе Хартри, однако теперь будет учтен и обмен. Единственной аппроксимацией здесь является предположение о медленном изменении плотности как функции координат. Для свободного атома это предположение, однако, довольно серьезно. Кон и Шэм распространили свою теорию также и на возбужденные состояния, в частности, использовали ее для определения теплоемкости газа свободных электронов. Этот расчет потребовал введения дополнительных параметров, и в настоящее время ценность его не вполне ясна.  [c.349]

Поскольку в эксперименте трудно добиться постоянной плотности, обычно измеряют удельную теплоемкость при постоянном давлении с р. Однако можно показать (см. задачу 2), что для газа свободных электронов при комнатной температуре и ниже ср/с = 1 -[-И- О (квТ1%рУ. Поэтому при таких температурах, когда электронный вклад в удельную теплоемкость становится наблюдаемым (т. е. при нескольких кельвинах), эти две удельные теплоемкости отличаются одна от другой на пренебре1Жимо малую величину.  [c.62]

Если сравнить число Лорентца, полученное в теории Друде — Лорентца, с экспериментальным значением, усредненным по многим металлам и равным 2,44-10- Вт-Ом/К , то, как видим, согласие получается очень плохим. Это обстоятельство явилось весьма серьезным затруднением для электронной теории металлов. Как видно из вышесказанного, для. объяснения электропроводности и теплопроводности число свободных электронов в единичном объеме необходимо считать очень большим, но в таком случае тепловая энергия электронного газа ти (2= 12квТ становится значительной, а следовательно, теплоемкость должна приближаться к значению /2Мкв, чего в эксперименте никогда не наблюдалось. Более того, при объяснении теплоемкости твердых тел в области температур Г>0о приходится допустить, что электроны вообще не вносят вклада в теплоемкость и, как мы видели, электронный вклад в теплоемкость при комнатных температурах примерно в 100 раз меньше классического значения Таким образом, классическая теория Друде — Лорентца приходит к противоречию, так как она требует большого числа электронов для объяснения электропроводности и малого — для объяснения теплоемкости.  [c.194]

Достаточно точное выражение для теплоемкости электронного газа в металле можно получить, опираясь на следующие два предположения 1) возбуждаться (черпать энергию) могут лишь те электроны, энергетические уровни которых лежат внутри слоя шириной коТ вблизи уровня Ферми все прочие электроны не принимают участия в поглощении тепловой энергии 2) способные к возбуждению электроны ведут себя так же, как простой газ частиц с тепловой энергией 3/2 коТ каждая. Поэтому при температуре Т полная энергия п свободных электронов в едИ Ннце объема металла описывается выражением  [c.125]

Теплоемкость электронного газа. В металлах помимо ионов, образующих решетку и колеблющихся около положений равновесия, имеются и свободные электроны, число которых в единице объема примерно такое же, как и число атомов. Поэтому теплоемкость металла v должна складываться из теплоемкости решетки Среш и теплоемкости электронного газа Сдд. Оценим порядок величины Сэл-  [c.134]

Термоэлектронная эмиссия довольно хорошо объясняется с точки зрения классической теории, основанной на предположении, что свободные электроны в металле двигаются подобно молекулам газа в соответствии с законом распределения скоростей Максвелла (см. 5-4-3). Однако существуют случаи, когда необходимо в отношении к свободным электронам в металле применять статистику Ферми — Днрака (см. 5-1-6). Как пример этого рассмотрим задачу определения теплоемкости твердого тела.  [c.351]

Поэтому мольная теплоемкость (теплоемкость одного моля) металла, помимо величины 3/ , которая отражает колебания кристаллической решетки, должна также включать и величину 3/ /2, учитываюшую энергию движения свободных электронов. Между тем если провести практические измерения мольной теплоемкости металлов, то правило Дюлонга — Пти выполняется так же, как и в случае неметаллов, а энергия движения электронов оказывается почти не связанной с мольной теплоемкостью. Это можно было бы объяснить значительно меньшим числом свободных электронов по сравнению с числом атомов, но для легких веществ, несущих электрический заряд, таких как щелочные металлы, серебро, медь, такое объяснение не пригодно. Кроме того, выдвинутое предположение входит в противоречие с наличием таких принципиальных свойств металлов, как электропроводность и теплопроводность. Вместе с тем для объяснения термоэлектронной эмиссии представление свободных электронов в виде частиц, подобных молекулам газа, не годится.  [c.352]

В гл. III после описания модели свободных электронов Зоммерфельда — Хартри обсуждается аппроксимация Хартри — Фока. Затем дается предварительный и, по существу, исторический обзор работ по изучению взаимодействия в плотном электронном газе. Описаны приближения Вигнера, Бома и Пайнса и Гелл-Манна и Бракнера. Элементарным образом вводятся физически важные понятия экранирования и коллективных колебаний (плазмонов). Далее, несколько формально, даются определения динамического форм-фактора и диэлектрической проницаемости, зависящей от частоты и от волнового вектора. Показывается, как с помощью этих величин можно весьма просто вычислить ряд взаимосвязанных характеристик системы электронов. Сюда относятся, в частности, временная функция корреляции для операторов плотности, сечение рассеяния быстрых заряженных частиц, бинарная функция распределения, а также энергия основного состояния. Упор здесь делается на точное определение отклика системы на продольные поля, изменяющиеся как во времени, так и в пространстве. Затем в приближении хаотических фаз находится выражение для диэлектрической проницаемости системы. В этом же приближении вычисляются и все остальные характеристики, перечисленные выше. Заключительный параграф этой главы посвящен рассмотрению взаимодействия между электронами в простых металлах. Показывается, что аппроксимация хаотических фаз здесь неприменима, после чего дается расчет корреляционной энергии, удельной теплоемкости и спиновой восприимчивости щелочных металлов.  [c.29]

Вопрос об электронной теплоемкости имеет, в частности, и исторический интерес в связи с развитием квантовой механики. Согласно классической статистике, на каждую степень свободы системы осцилляторов должна приходиться энергия КТ. Если кристалл состоит из N атомов (каждый из них обладает тремя степенями свободы), то можно думать, что тепловая энергия составит ЗМКТ, а это соответствует удельной теплоемкости ЗК на один атом. Значение ЗК получается в соответствии с законом Дюлонга и Пти для удельной теплоемкости и приближенно согласуется со значениями, наблюдаемыми у многих веществ при комнатных температурах. Однако давно было известно, что электроны в металле ведут себя как свободные, поэтому можно было бы ожидать, что, как и для идеального газа, должна появиться дополнительная энергия /г КТ на электрон. Для такого металла, как натрий, это приводит к удельной теплоемкости /г К- Тем не менее удельная теплоемкость металлов типа натрия при комнатной температуре довольно точно определяется только атомным вкладом. Разрешение этого противоречия пришло только с квантовой механикой, и из наших результатов мы увидим, в чем именно оно состоит.  [c.270]


Если твердое тело — металл, то помимо решетки из ионов в тепловом движении принимает участие и свободный электронный газ. Так как температурное поведение соответствующих теплоемкостей разное, Среш 9 , С эл то при низких температурах (порядка нескольких фадусов) теплоемкость электронного газа может оказаться преобладающей, и общая теплоемкость металла оказывается линейной по температуре (до точки перехода в сверхпроводящее состояние, см. 2, п. в)), если у данного металла она имеется).  [c.204]

При этом в некоторых местах окажется возможным сравнение с экспериментом (теплоемкость электронного газа, эффект де Гааза —ван Альфена). В следующих главах мы также возвратимся к этой модели, так, в гл. УП1 при рассмотрении явлений переноса (теория электропроводности Друде, Лорентца, Зоммер-фельда, соотношение Видемана — Франца и др.), в гл. IX при рассмотрении оптических явлений (поглощение свободными носителями, циклотронный резонанс).  [c.29]

Приступая к рассмотрению теории теплоемкости твердого тела, мы предположили, что в узлах пространственной решетки находятся атомы одинакового сорта без внутренних степеней свободы. Это, конечно, простейший случай. Огромное число твердых тел устроено сложнее в узлах кристаллической решетки находятся конфигурации из группы атомов разного сорта. Колебания центров инерции этих групп относительно друг друга — это те процессы, которые мы учли в одноатомной модели. Но есть еще и внутренние движения. В некоторых случаях они могут носить изолированный характер (наподобие внутренних движений в молекулах идеального многоатомного газа). Например, свободное вращение в ячейке ( атомы Н2 свободно вращаются внутри решетки) — к теплоемкости Среш надо добавить Свращ независимое колебание внутри ячейки (колебание бензольного кольца в ячейках твердого бензола) — надо добавить Сколеб наличие двух близких электронных уровней — надо добавить Сд, и т. д.  [c.204]


Смотреть страницы где упоминается термин Газ свободных электронов, теплоемкость : [c.157]    [c.268]    [c.13]    [c.155]    [c.322]    [c.326]    [c.337]    [c.120]    [c.198]    [c.548]    [c.422]    [c.401]    [c.57]    [c.262]   
Теплопроводность твердых тел (1979) -- [ c.177 ]



ПОИСК



Теплоемкость электронная

Теплоемкость электронов

Электроны свободные



© 2025 Mash-xxl.info Реклама на сайте