Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Атомная промышленность

В настоящей главе рассматриваются вопросы радиационной безопасности на урановых рудниках, в производствах радия и ТВЭЛОВ из необлученного урана. На рис. 14.1 представлена упрощенная схема комплекса производств атомной промышленности [ ]  [c.203]

Книга рассчитана на студентов инженерно-физических и фи-зико-технических втузов и на инженерно-технических работников атомной промышленности, желающих пополнить свои знания в области ядерной физики, а также на студентов вузов.  [c.12]


Применение атомной энергии в народном хозяйстве и обороне страны, специфические особенности ее получения и использований определили необходимость разработки и освоения многих новых физико- и химико-технологических процессов производства специальных материалов, изготовления специального оборудования и т. д. Применительно к этому обширному комплексу работ за последнее двадцатилетие в СССР сформировались и получили быстрое развитие новые области техники и промышленности — атомная (ядер-ная) техника и атомная промышленность, охватывающие добычу необходимых сырьевых материалов и их переработку, производство изотопов, изготовление специального производственного оборудования и т. д. (табл. 4).  [c.161]

Начатое во второй половине 40-х годов производство источников ядерных излучений уже в 50-х годах составило одну из развитых отраслей атомной промышленности Советского Союза. Высокая эффективность применения изотопов и излучений способствовала их быстрому распространению в практике научных исследований, в промышленности, сельском хозяйстве и медицине. За последние годы радиоизотопные приборы и облучающие установки используются более чем в трех тысячах советских научно-исследовательских, промышленных и медицинских организаций. По оценке Института экономики Академии наук СССР, общая экономия, получаемая народным хозяйством нашей страны в результате использования радиоактивных изотопов и ядерных излучений, превышает 200 млн. руб. в год В 1957 г.  [c.188]

За два десятилетия, отделяющие наше время от памятной даты 25 декабря 1 Э46 г., когда И. В. Курчатовым и его ближайшими сотрудниками был введен в действие первый советский ядерный реактор, атомная техника и атомная промышленность прошли большой и сложный путь развития. Самоотверженная работа ученых, инженеров и рабочих под руководством Коммунистической партии Советского Союза, согласованная и целенаправленная деятельность научно-исследовательских институтов, проектно-конструкторских организаций и промышленных предприятий страны, обусловившая разработку и изготовление уникального оборудования в рекордно короткие сроки, тщательная подготовка исследовательского и технического персонала — все это определило значительные успехи СССР в получении и использовании атомной энергии.  [c.195]

В сфере промышленных производств эти успехи характеризуются созданием мощной отечественной атомной промышленности, располагающей сырьевыми ресурсами и развитыми производственными мощностями.  [c.195]

Атомная промышленность 161, 188, 195 Атомная техника 160—162, 166, 167 Атомная энергия — см. Ядерная энергия Атомные транспортные энергетические установки 161, 182—185 Атомоходы 149, 182—185, 296, 297 Аэродинамика 330, 331, 333, 343, 368, 378, 403, 411  [c.460]


Если раньше эти вопросы возникали в химической и нефтеперерабатывающей промышленности, то в последнее время они приобрели более широкое значение особенно в связи с использованием низкотемпературной плазмы, освоением космоса, прогресса в атомной промышленности и в ряде других областей техники.  [c.113]

Большое значение, придаваемое в нашей стране безопасности атомной энергетики, нашло свое отражение в создании Государственного Комитета СССР по безопасности работ в атомной промышленности (1982 г.) и в выделении самостоятельного Министерства атомной энергетики СССР из Минэнерго СССР (1986 г.).  [c.42]

При решении этих вопросов и разработке математического обеспечения может быть использован опыт, накопленный в различных отраслях народного хозяйства — авиации, судостроении автомобилестроении, сельскохозяйственном машиностроении, приборостроении, электронном машиностроении, атомной промышленности, на железнодорожном транспорте. В ряде перечисленных отраслей автоматизация постановки диагноза уже реализована или созданные для этого системы проходят опытную проверку,, что позволяет учесть как положительный опыт, так и обнаруженные трудности и недостатки при реализации отдельных решений. Однако у гибких технологических систем имеются свои особенности, связанные с необходимостью диагностирования и адаптации к изменяющимся внешним условиям технологического процесса обработки или сборки.  [c.4]

Свинец широко используется в качестве кислотоупорного материала для сернокислотных камер, травильных ванн, для изготовления аккумуляторных пластин, кабельных оболочек, различных сплавов (баббиты, типографские сплавы — гарты, припои, легкоплавкие сплавы для литья под давлением, свинцовистые бронзы и латуни и пр.). Металлический свинец применяется в атомной промышленности в качестве защиты от радиоактивных излучений.  [c.378]

Полиэтилен является наиболее часто употребляемым полимером для покрытия различных материалов. Из-за шероховатой поверхности и склонности к образованию волосяных трещин полиэтилен редко применяется в чистом виде, т. е. без добавок специальных компонентов. Из полиэтилена изготовляют, например, защитные покрытия для оборудования химической и атомной промышленности.  [c.89]

Уже в настоящее время на объектах атомной промышленности гидравлические системы работают в зоне действия излучений высокой энергии. В будущем гидравлические устройства найдут широкое применение в ракетах и аппаратах для космических полетов, оборудованных двигателями, которые работают на ядерном горючем, и в других объектах атомной техники.  [c.346]

Ниобий. Ниобий распространен в природе несколько больше, чем молибден. СССР обладает достаточными запасами руд ниобия ниобий как тугоплавкий металл производится методом порошковой металлургии, вакуумной дуговой или электронно-лучевой плавкой. Ниобий имеет кристаллическую решетку центрированного куба в сравнении с молибденом он имеет преимущество в меньшем удельном весе 8,57. Ниобий отличается высокой жаропрочностью, его жаростойкость несколько выше, чем у молибдена, а главное он технологичен, пластичен и хорошо сваривается. Малое поперечное сечение захвата им тепловых нейтронов и коррозионная стойкость его при 800° С в жидких металлах являются весьма ценными свойствами для атомной промышленности.  [c.407]

Задача о проницаемости трубок нагревателя начинает получать некоторый теоретический фундамент, поскольку сейчас проводится очень серьезная работа специалистами в области материаловедения, которые занимаются осуществлением программы автомобильных двигателей Стирлинга в США. В атомной промышленности также ведутся некоторые исследования проницаемости стенок при использовании в качестве рабочего тела водорода. Однако, хотя соответствующие работы заслуживают внимания, в них не рассматриваются условия работы двигателя Стирлинга с периодически изменяющимся течением высокотемпературного газа под большим давлением. Температура является важным фактором, влияющим на скорость фильтрации. Но, как мы уже отмечали, высокотемпературная среда влияет также и на физические характеристики материала трубок на-  [c.262]


Максвелл Д., Хилл М. Управление качеством на атомных станциях // Бюллетень подкомитета Ц Управление качеством продукции в атомной промышленности и энергетике. — 1994. Вып. 5.  [c.296]

Проблема ремонтоспособности загрязненного оборудования едва ли не самая главная и наиболее трудная проблема радиационной безопасности в атомной промышленности. Причина этого заключается, в частности, в известных трудностях дезактивации оборудования, его демонтажа и транспортировки. Поэтому при проектировании защиты от источников нзлучення необходимо предусматривать решения, обеспечивающие безопасную ремонтоспособность атомной техники. Например, в транспортных галереях с технологическими растворами ревизия за состоянием целостности труб может осуществляться при помощи подвижных защитных камер (так называемых танков) с окнами из свинцовых стекол, или перископами. Пользуясь подобными камерами, можно выполнять и отдельные ремонтные работы смену вентилей, сварку и замену участков труб и т. д. Следует также предусматривать систему дезактивации оборудования и помещений зон I и II, а также специализированные цеха (или мастерские) по ремонту загрязненного оборудования. Все более широкое применение находит контроль за оборудованием и процессами при помощи телевизионной техники. В проблеме ремонтоспособности большую роль играют достаточно мобильные конструкции местных (чаще всего теневых защит). Особое внимание следует уделять защите от излучения при проведении ремонтных работ в аварийных ситуациях.  [c.194]

На специальных заводах ведется также изготовление тепловыделяющих элементов ( твэлов ) для реакторов. Обычно выполняемые в виде стержней из урана, плутония, их окислов, карбидов или сплавов с другими материалами, твэлы помещаются в стальные, алюминиевые или какие-либо другие герметичные оболочки, предохраняющие ядерное тоцливо от коррозии и препятствующие поступлению радиоактивных осколков деления ядер во внешнюю среду. Производство твэлов составляет одну из существенных отраслей атомной промышленности.  [c.163]

Осуществляя широкую программу народнохозяйственного развития. Советский Союз занял достойное место в ряду стран с развитой атомной промышленностью. Его промышленная атомная энергетика становится экономически выгодной в сравнении с энергетикой, основанной на использовании ископаемого органического топлива, а работы по практическому применению ядерных излучений успешно реализуются во многих отраслях народного хозяйства. Исходя из необходимости ускорения научно-технического прогресса на основе широкого развития научно-исследовательских работ и быстрого использования их результатов в производственной практике, директивы XXIII съезда КПСС по пятилетнему плану развития народного хозяйства СССР на 1966—1970 гг. предусматривают развитие исследований по ядерной физике и физике твердого тела в целях широкого использования  [c.195]

Таблица 7.8. Производственные выбросй с предприятий атомной промышленности Таблица 7.8. Производственные выбросй с предприятий атомной промышленности
ZrBj), силицидов, сульфидов. Технология получения такой керамики состоит в спекании порошкообразного сырья." Новая керамика возникла в связи с требованиями реактивной авиации и ракетостроения, для которых необходимы высокопрочные термоустойчивые конструкционные и теплоизоляционные материалы, и с требованиями атомной промышленности, где необходимы особые ядерные свойства (захват, рассеяние или поглощение нейтронов, противостояние радиоактивному облучению), высокая огнеупорность, термостойкость и коррозионная стойкость.  [c.357]

Атомная промышленность Тигли для хранения радиоактивных материалов элементы защиты от излучения радия (сплав W—Ni—Си) Детали теплообменников трубопроводы работающие со специальными средами при высоких температурах Детали теплообменников Детали агрегатов химической переработки ядер-ного горючего трубчатый контейнер реактора, работающего на расплавленном плутонии или сплаве Bi—U  [c.411]

Однако использование машин, аппаратов и конструкций в различных областях промышленности связано с влиянием специфических факторов коррозии. В химическом машиностроении особую роль играет агрессивность сред. Химическая аппаратура эксплуатируется при высоких температурах и давлениях в контакте с различными кислотами, щелочами, агрессивными газами. Судостроение предъявляет особые требования к материалам в условиях контакта с морской или речной водой металлы и сплавы подвергаются различным видам локальной коррозии (особенно щелевой и контактной). Специфический фактор морской коррозии — биологическое обрастание металлических конструкций. Коррозия же металлических подземных сооружений осложняется электролитическим действием блуждающих TOKOiB различной частоты (от О до 50 гц), Атомная промышленность поставила ряд новых проблем в области коррозии и защиты металлов. Специфическим фактором коррозии оборудования, используемого в ядерной энергетике, являются высокие параметры теплоносителей, наличие нейтронных потоков, опасность наведенной радиоактивности в продуктах коррозии. Детали летательных аппаратов могут подвергаться также различным видам коррозии химической или электрохимической, в зависимости от назначения и способа эксплуатации.  [c.120]

Малое сечение захвата тепловых нейтронов (1,38х X10 м ) позволяет использовать И. как конструкционный материал в атомной промышленности. Из сплавов Y с Be и.зготовляюг отражатели и замедлители нейтронов, работающие при темп-рах св. 1000 °С. Добавление И. к алюминиевым сплавам повышает их прочность. Примесь 1% И. в стали существенно повышает её устойчивость к окислению, добавка И. к ванадию улучшает его пластичность. И. входит в состав ра. зл. люминофоров, в т. ч. кооперативных люминофоров и красных люминофоров для цветного телевидения. Иттриевые ферриты используют в радиоэлектронике. Мя. соединения И. являются лазерными материалами. Из искусств, радионуклидов И. наиб.. эначегп1е имеют fi -радиоактивные Y ( i/j=64,4 ч) и Y (7 i/j = 58,51 сут), содержащиеся в продуктах деления, а также получаемый на циклотроне Y (элект-ролпый захват ц р+-раснад, 71/ = 106,6 сут).  [c.226]


Из этого следует, что ядерное топливо должно многократно циркулировать через реакторы и топливные предприятия атомной промышленности радиохимические заводы, обеспечивающие регенерацию (очистку от продуктов деления и примесей) выгруженного из реактора топлива и возврат его в топливный цикл после необходимого дообогащения делящимися нуклидами метал-лу №ические заводы по производству новых твэлов, в которых регенерироВ анное топливо добавляется к свежему, не подвергавшемуся облучению в реакторах. Таким образом, характерная особенность топливоснабжения в ядерной энергетике — техническая возможность и необходимость возврата в цикл (рецикл) не использованных в условиях однократного пребывания в реакторе делящихся и воспроизводящих изотопов урана и плутония. Для обеспечения бесперебойного топливоснабжения создаются необходимые мощности предприятий топливного цикла. Их можно рассматривать как предприятия, удовлетворяющие собственные нужды ядерной энергетики как отрасли. На возможности рецикла урана и плутония основана концепция развития ядерной энергетики на реакторах-размножителях ядерного топлива.  [c.90]

До последнего времени руководители атомной промышленности США были уверены в том, что ... американская технология по разделению урана останется недосягаемой и сделает экономически невозможной конкуренцию со стороны тех, кто не использует, не может использовать технологию США . Однако конкуренция, угрожающая американской монополии на мировой обогатительный сервис, уже. действует. Это видно из табл. 7.3 и 7.4. Обеспечение бурно развивающейся ядерной энергетики собственным обогащенным ураном рассматривается рядом индустриально развитых стран с позиции создания надежной гарантии их экономической и политической независимости от США. К 1990 г. западноевропейские страны будут на 80—85 % покрывать свои потребности в обогащенном уране, используя созданные мощности разделительных заводов фирм Евродиф и Юренко .  [c.225]

Однако уже в ноябре 1985 г. на ежегодном собрании Атомного промышленного форума США было высказано мненйе, что принятое Министерством энергетики решение ошибочно, что новая лазерная технология еще недоработана для промышленного внедрения и может не оправдать возлагаемых на нее надежд. Позже Министерством энергетики США (DOE) было заявлено, что начало сооружения первого завода лазерного разделения планируется не ранее 1995 г. с вводом первой очереди в 1998 г. Таким образом, до 2000 г. США будут продолжать обогащать уран по сравнительно дорогой цене на своих диффузионных заводах.  [c.237]

В настоящее время фтор широко используется в производстве различных низкокипящих жидкостей — фреонов для холодильных установок, а также при изготовлении кислотостойких пластмасс — тефлонов. Фторидные процессы применяются не только в атомной промышленности, но и в технологии цветной металлургии и других отраслях. Основным сырьем для промышленного получения фтора служит флюорит (плавиковый шпат) (СаР2 ).  [c.254]

Литье в керамические формы по постоянным моделям применяют при литье модельных комплектов, штампов, металлических форм, кокилей для чэрных, цветных сплавов, стекольного и пластмассового производства, заготовок для энергетической, атомной промышленности, для аэронавтики и космонавтики.  [c.390]

В связи с применением аустенитных сталей в атомной промышленности были проведены исследования влияния радиоактивного излучения на стабильность структуры этих сталей. Установлено, что под действием радиоактивного излучения оба процесса распада аустенита у а, А М) заметно ускоряются, особенно в сталях типа 18-8, содержащих ниобий [4, 8, 40, 43]. С. Т. Конобеевский и др. установили, что нейтронная бомбардировка не вызывает распада аустенита в стали 1Х18Н9Т, но прочность стали повышается, а пластичность падает. Данные о влиянии нейтронного облучения на механические свойства хромоникелевой аустенитной стали и сплавов типа инконель приведены в табл. 8.  [c.33]

Научно-техническое направление по получению и изучению свойств УД материалов сложилось в России (СССР) в 50-е годы XX века. На предприятиях атомной промышленности были получены УД порошки с размером частиц около 100 нм, которые были успешно применены при изготовлении высокоггористых мембран для диффузионного метода разделения изотопов урана. В 60-е годы в ИХФ АН СССР был разработан левитационный метод получения УД порошков. В 70-е годы с помощью использования электрического взрыва проводников и плазмохимического  [c.10]

Вряд ли процесс широкой интеграции в промышленность нового оборудования, основанного на применении сверхпроводимости, будет взрывным, скорее, он будет эволюционным, но с заметной скоростью нарастания. Широкое применение сверхпроводникового электротехнического оборудования как при генерации электроэнергии, так и при ее транспортировке и потреблении позволит увеличить эффективность использования электроэнергии на 5...7 %, а, следовательно, практически на эту же величину сократить потребление первичных энергоносителей, которыми преимущественно являются органические топлива. В результате уменьшится выброс парниковых газов в атмосферу, снизится общая нагрузка на окружающую среду. Совершенно очевидно, что преобразующее значение новой технологии не ограничивается экономией первичных энергоносителей. Представляется, что такое преобразование непосредственно коснется всех областей деятельности, где в больших масштабах находит применение электротехническое оборудование, -электроэнергетики, машиностроения, металлургии, горнодобывающей и перерабатывающей промышленности, наземного, морского и воздушного транспорта, атомной промышленности.  [c.601]

Повышенная жаропрочность, термическая стабильность, хорошая обрабатываемость САП по-зволяяет использовать их для лопаток турбокомпрессоров, шатунов, крыльчаток газовых турбин, поршней и т. д. Хорошая проницаемость САП для нейтронов позволяет применять их в атомной промышленности. Так, например, трубы и топливные элементы из САП применяются в атомных реакторах при температурах до 480 °С. Более высокие, чем у нержавеющих сталей, свойства САП позволяют широко использовать их в самолетостроении. Одним из наиболее перспективных ДКМ являются материалы на основе никеля, упрочненного 2-3 объемными процентами оксида алюминия, тория, гафния, циркония, ванадия, карбидами титана и тантала.  [c.803]

Качалов В.А., Горлов В.Н. Применение методов системного анализа при рассмотрении концептуальных вопросов создания системы сертификации продукции атомной промышленности и энергетики. Управление качеством и сертификация продукции в атомной промышленности и энергетике. — М., 1995. Вып. 2(7).  [c.142]

Кислоты находят широкое применение в самых разнообразных технологических нроцеосах в различных отраслях промышленности при травлении металлов с целью удаления технологической окалины в металлургической и машиностроительной отраслях промышленности в энергетике и теплотехнике с целью удаления накипи и других отложений на теплообменной аппаратуре в атомной промышленности с целью дезактивации оборудования в нефтяной и газовой промышленности при обработке пластов с целью увеличения отдачи нефти и газа в ракетной технике в качестве одного из компонентов ракетного топлива в различных технологических процессах химической и нефтехимической промышленности и т. д. В ряде технологических процессов, например при крекинге нефти, кислоты появляются в результате гидролиза солей и оказывают разрушающее действие на аппаратуру.  [c.107]


Смотреть страницы где упоминается термин Атомная промышленность : [c.312]    [c.160]    [c.253]    [c.123]    [c.256]    [c.39]    [c.309]    [c.4]    [c.447]    [c.124]    [c.478]   
Энергетическая, атомная, транспортная и авиационная техника. Космонавтика (1969) -- [ c.161 , c.188 , c.195 ]



ПОИСК



Атомная промышленность капиталистических стран

Атомная техника и атомная промышленность

Атомный вес

Г лава седьмая. Сырье для атомной промышленности

Глава шестнадцатая. Атомные электростанции. Прямое преобразование энергии. Перспективы развития промышленных электростанций

Коррозия и защита оборудования атомной промышленности (В. В. Герасимов)

О развитии атомной промышленности в 1950-1954 гг

Оборудование атомной промышленности

Письмо Л.П. Берия И.В. Сталину с представлением на рассмотрение проекта постановления СМ СССР О развитии атомной промышленности на 1950-1954 гг

Система сертификации оборудования атомной энергетики и промышленности

Станция промышленного теплоснабжения, атомная



© 2025 Mash-xxl.info Реклама на сайте