Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение вида разрушения

В практике исследования эксплуатационных разрушений помимо определения вида разрушения возникают и другие задачи. Они вытекают из требования проведения контроля над состоянием детали в эксплуатации и устранения несовершенств конструкции или изменения режимов ее работы. Эти стратегические задачи решаются в рамках количественной фрактографии. При количественных оценках силового и температурного нагружения элементов конструкций исходят из того, что изменение режима или условий внешнего воздействия приводит к изменению напряженного состояния материала в вершине трещины. Формирование того или иного параметра рельефа  [c.80]


Каждый метод ускоренных испытаний должен быть предназначен для определенного вида разрушения (износ, усталость, коррозия и т. д.) или типа машины, детали, узла.  [c.5]

ОПРЕДЕЛЕНИЕ ВИДА РАЗРУШЕНИЯ  [c.14]

МПа) и срез армирующих волокон под углом 45° без местного выпучивания арматуры (материалы с жесткой матрицей, > 2000 МПа). Материалы, армированные под углом к продольной оси образца, разрушаются от сдвига без смятия по торцам всю сдвигающую нагрузку при этом воспринимает матрица. Перечисленные основные виды разрушения могут сопровождаться рядом других явлений неупругим и нелинейным поведением армирующих волокон и матрицы, расслоением, поверхностным отслоением, общей потерей устойчивости, смятием по торцам, скалыванием по слою. Различное сочетание всех этих явлений может затруднить определение вида разрушения.  [c.197]

Рис. 55, Внешний вид образца для определения вязкости разрушения Рис. 55, Внешний вид образца для <a href="/info/32144">определения вязкости</a> разрушения
Цель расчета — предварительное определение размеров колес и передач. Он применяется для закаленных до высокой твердости колес и открытых передач, основным видом разрушения зубьев которых является абразивный износ (передачи сельскохозяйственных, транспортных и других машин).  [c.112]

Распад нестабильных частиц сильно отличается от тех видов разрушения, или распада, которые мы обычно наблюдаем. Вероятность смерти в течение ближайшего часа выше для пожилого человека, чем для молодого бактерия не испытывает деления непосредственно после своего рождения и делится только по истечении определенного времени старый автомобиль сломается скорее, чем новый. Во всех этих случаях вероятность того или иного вида распада зависит, в частности, от предыстории объекта, имеющейся к данному моменту объекты, просуществовавшие дольше, более склонны испытать то или иное разрушение. С другой стороны, бесспорным экспериментальным фактом является то обстоятельство, что вероятность распада элементарной частицы, или ядра любого радиоактивного изотопа, или, наконец, возбужденного атома или молекулы не зависит от продолжительности существования частицы. Свободный нейтрон нестабилен, но длительно существовавший нейтрон ничем не отличается от нейтрона, только что ставшего свободным. Предсказать момент распада заданной нестабильной частицы невозможно. Воспроизводимое значение имеет лишь среднее время жизни, установленное для большого числа частиц.  [c.435]


При сложном напряженном состоянии, например, в местах концентрации растягивающих напряжений условия перехода от пластического разрушения к хрупкому другие. Поэтому и температура перехода от одного вида разрушения к другому, определенная в этих условиях, отличается от температуры перехода, найденной путем испытания гладких образцов на растяжение. Элементы многих конструкций работают именно в условиях концентрации напряже-  [c.71]

Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]

Высокая коррозионная стойкость сплавов принципиально не исключает возможность появления так называемого коррозионного растрескивания даже в средах, где установлена их высокая коррозионная стойкость. Поэтому коррозионное растрескивание представляет большую опасность. Она заключается в том, что разрушение вязкого в нормальных условиях металла, подверженного одновременно воздействию напряжения и определенной активной среды, происходит хрупко, т.е. без заметных деформаций и при напряжениях, более низких, чем временное сопротивление и даже предел текучести. Этот вид разрушения наиболее характерен для высокопрочных металлических материалов, склонных к пассивации, но находящихся, однако, в условиях, когда пассивное состояние под влиянием агрессивной среды может нарушаться в зоне максимальных напряжений. У титана вследствие высокой устойчивости пассивного состояния и быстрой регенерации во многих средах пассивных оксидных пленок при их механическом повреждении, а также из-за достаточной пластичности чувствительность к коррозионному растрескиванию оказалась во много раз меньше, чем у высокопрочных и нержавеющих сталей, алюминиевых и магниевых сплавов. Но по мере разработки более прочных титановых сплавов и расширения области их применения были установлены случаи явного коррозионного растрескивания и определены многие агрессивные среды, способствующие этому явлению.  [c.32]

При любом виде разрушения, даже когда материал диска и не проявил своей чувствительности к условиям нагружения, можно перейти от реализованного процесса роста трещины, оцененного по параметрам рельефа излома количественно, к случаю с наименьшей продолжительностью периода разрушения. Для этого вводят периодичность осмотров дисков через минимальное число полетов. Ее определяют в результате исследования излома диска, разрушенного в эксплуатации, определения ведущего механизма разрушения материала и по-  [c.470]


Реализуемый механизм усталостного разрушения лопатки определяется только свойствами материала и видом его напряженного состояния перед вершиной трещины. Поэтому к одному и тому же виду рельефа излома, отражающему определенный механизм разрушения, можно отнести различное сочетание условий и параметров цикла  [c.580]

В разд. III рассмотрена прочность слоя при одноосных нагружениях и виды разрушения. Исследована взаимосвязь физических характеристик, влияющих на прочность слоя, и различных видов разрушения слоя. Дано рабочее определение прочности слоя, которое может служить средством для создания теорий, предсказывающих прочность.  [c.109]

В целях решения многомерной задачи (или со сложным видом смешанного разрушения) для композитов здесь мы предложим другую интерпретацию. Эта интерпретация основана на знании соответствующей прочности материала, содержащего случайно распределенные микроскопические трещины (т. е. трещины, которые на порядок меньше макроскопической), плотность которых типична для технологии изготовления материала. Знание прочности соответствует определению тензоров разрушения Рц,. . .  [c.230]

Ву и Томас [75] провели ряд экспериментов по определению неустойчивости трещины, расположенной по границе раздела между эпоксидной смолой и сталью, а также между эпоксидной смолой и эпоксидной смолой, упрочненной стеклянными шариками Для всех образцов вид разрушения сначала характеризовался медленным ростом трещины вдоль границы раздела, а затем следовало быстрое распространение трещины под углом к границе раздела вплоть до окончательного разрушения. Для каждой серии образцов угол наклона части трещины к границе раздела был почти постоянен, однако значения этих углов существенно изменялись для различных серий.  [c.258]

Возможность использования данных, полученных из простых экспериментов, и хорошее соответствие предсказанных по критерию предельных напряжений как виду разрушения, так и предельным напряжениям, определенным экспериментально в условиях сложного напряженного состояния, — вот необходимые характеристики критерия прочности, пригодного к практическому использованию.  [c.49]

Усталость — это полная потеря свойств (или разрушение) элемента конструкции, наступившая после действия на него переменной нагрузки, максимальная амплитуда которой по величине меньше статической, монотонно прикладываемой нагрузки, вызывающей разрушение этого элемента. Процесс разрушения и усталости металлов зависит от состава, особенностей металлургического процесса, геометрии образца (элемента конструкции), вида нагрузки, времени и условий внешней среды. Для композитов число влияющих параметров необходимо увеличить по крайней мере вдвое из-за наличия в материале двух фаз. Более того, необходимо также учесть и влияние поверхности раздела, что приведет к еще большему усложнению задачи. Конечно, ни одна приемлемая модель для предсказания процесса разрушения не мол<ет одновременно включить все вышеупомянутые параметры. Действительно, невозможно себе представить систему черного ящика , у которого на входе — весь комплекс переменных параметров, а на выходе — только скорость роста разрушения и время достижения предельного состояния. Поэтому не существует единого подхода для определения усталостного разрушения для металлов (которые по крайней мере при макроскопическом подходе рассматриваются как однородные). Для композитов проблема тем более усложняется вследствие присущей им неоднородности. Усталости композитов посвящены многочисленные работы. Достижения и современные тенденции в этой области обобщены в работах [49, 50].  [c.84]

Кроме первого разрушения слоя, другим видом разрушения, присущим слоистым композитам, является расслоение. Хотя этот вид разрушения иногда рассматривается в качестве самостоятельного, еще проведено мало исследований, направленных на определение того, что можно назвать прочностью расслоения . Результаты экспериментов показывают, что расслоение является основным видом докритического разрушения при усталостных нагружениях.  [c.137]

Причина хрупких эксплуатационных разрушений, так же как других видов разрушения, в большинстве случаев носит комплексный характер. Часто это хрупкое состояние материала (исходное или возникшее при определенных условиях работы), наличие хрупкого слоя на поверхности, неблагоприятное конструк-  [c.49]

Следует заметить, что электрохимическая гетерогенность сварного соединения, обусловившая избирательный характер коррозии, сама по себе не является достаточным условием появления наиболее опасного вида разрушения типа коррозионного растрескивания, возникающего только при определенных сочетаниях  [c.219]

С лабораторными и эксплуатационными коррозионными испытаниями связаны и методы оценки. Результаты иопытаний оценивают визуально по изменению состояния поверхности, массы и размеров, общей площади и распределению участков неравномерного коррозионного разрушения, изменению структуры и виду разрушения, выявленным металлографическим путем, изменению механических и эксплуатационных свойств. Наиболее распространенным методом оценки коррозии металлов является определение убыли массы, которую можно оценить количественно, считая, что коррозия протекает равномерно. По этой убыли  [c.91]

Во втором случае разрушение произойдет тогда, когда площадь опасного сечения уменьшится до недопустимых пределов. Обычно уменьшение площади опасного сечения связано с неудовлетворительной износостойкостью выбранного материала, т. е., несмотря на удовлетворительные прочностные характеристики, этот материал должен быть заменен более износостойким. Данный случай разрушения деталей машин часто встречается в узлах, контактирующих с абразивом, так как абразивный износ — наиболее катастрофический вид износа. Рассматриваемый вид разрушения носит двоякий характер. С одной стороны — это постепенный отказ, с другой — типичный внезапный отказ, наблюдающийся при определенных условиях. Этот вид разрушения, по сути, ухудшает первый член формулы (3), хотя, если разрушения еще не произошло, он определяет второй член той же формулы.  [c.22]


Изучение кинетики износа и повреждаемости в зависимости от режима трения, среды и свойств материалов в связи с определением критических переходов от одних видов разрушения к другим.  [c.12]

Затруднения в применении классических теорий, связанные с возможностью двух состояний материала — хрупкого или пластичного. До сравнительно недавнего времени и критерии разрушения и критерии текучести назывались теориями прочности. Это объясняется тем, что первоначально они формулировались без указания на то, какое именно предельное состояние материала имеется в виду, и лишь позднее при проверке применимости этих критериев удалось установить, что некоторые из них верны для хрупкого состояния материала, работающего при определенных видах напряженных состояний, а другие дают результаты, хорошо согласующиеся с экспериментом лишь в случае пластического состояния материала. В настоящее время можно четко различать, какие из условий являются критериями прочности и какие условиями пластичности. Вместе с тем известно, что один и тот же материал в разных условиях может вести себя по-разному, в одних условиях как хрупкий, а в других — как пластичный. В основном на переход материала из одного состояния в другое влияют следующие факторы  [c.537]

Определение долговечности зубчатых колес. К основным видам разрушения зубчатых колес, как уже указывалось выше, относятся усталостный излом зубьев, происходящий обычно у основания ножки зуба, и усталостное разрушение рабочих поверхностей зубьев. В соответствии с этими видами разрушения зубчатых колес применяют два основных метода испытаний для определения их долговечности усталостные испытания на изгиб зубьев и испытания на контактную выносливость рабочих поверхностей. При испытании на контактную выносливость в эксплуатационных условиях можно наблюдать и другие виды износа.  [c.274]

На целевых машинах проводят испытания строго определенных видов, как правило, при экстремальных значениях параметров (скоростные машины для испытания с наивысшей достижимой мощностью, разрывные машины для исследования хрупкого разрушения при предельно высоких нагрузках и др.).  [c.30]

Определение видов разрушения типовых деталей ПТхМ по образцам и разработка методов предупреждения каждого вида разрушения.  [c.345]

Во время периодических осмотров экспонатов определение видов разрушений и их оценку производят по десятибальной системе ГИПИ-4, приводимой в гл. 7 (стр. 394).  [c.391]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

Для решения этих уравнений и определения зависимости Г7к= =/(0) необходимы экспериментальные значения продольной, поперечной и сдвиговой прочности композита при сжатии и растяжении. Теория не предполагает определенного механизма разрушения влияние поверхности раздела на прочность при внеосном растяжении может быть учтено лишь косвенно — с помощью экспериментальных данных для О и 90°, а форма кривой при значениях углов, близких к 45°, определяется в основном сдвиговой прочностью композита и величиной недиагональных членов тензора Fij. Цай и By показали, что с теорией хорошо согласуются экспериментальные данные по прочности однонаправленных углепластиков при внеосном нагружении, но для других композитов или более сложных видов напряженного состояния теория не проверялась., ,  [c.191]

Для изотропных материалов экспериментально было обнаружено, что энергия, затраченная на продвижение трещины, относительно постоянна. Поэтому большая часть усилий была сконцентрирована на изучении различных методов вычисления затраченной энергии, причем игнорировалось обоснование сделанного выше упрощения. Анализ энергетического неравенства (И) показывает, что левая часть (11) постоянна тогда и только тогда, когда Цравая. часть неравенства является функцией одного параметра. Это на самом деле соответствует случаю изотропного разрушения, когда под действием любого сложного плоского нагружения наблюдается неустойчивый рост трещины в направлении, ортогональном направлению максимального нормального напряжения около кончика трещины (например, см. работу [15]). Иначе говоря, в изотропном материале со случайно распределенными трещинами равной длины (рис. 9) только трещина, перпендикулярная действию нагрузки, является критической и только один вид испытания — растяжение в направлении, перпендикулярном трещине,— необходим для определения характеристики разрушения такого материала.  [c.228]


Очевидно, что применение методов мнкро- и макромеханики для анализа процесса разрушения слоистых композитов позволило достичь определенных успехов в объяснении некоторых экспериментальных данных. Тем не менее окончательно проблема качественной и количественной интерпретации всего спектра видов разрушения слоистых композитов остается нерешенной. Поэтому исследования должны быть направлены на оценку влияния неоднородности материала и разработку более простых моделей для предсказания разрушения композитов.  [c.54]

Микростроению изломов, образованных по механизму ямочного разрыва, присуща общая особенность — неоднородность. Достаточно грубо можно различать два вида микронеоднородности ямочного строения. Неоднородность первого вида в основном связана со структурной неоднородностью применяемых конструкционных материалов. Наблюдается незакономерная смесь крупных и мелких, а также глубоких и менее глубоких ямок (см. рис. 5, ж). Неоднородность второго вида представляет собой определенное чередование микрозон с различными микрофрактографическими характеристиками, например, в ряде случаев наблюдаются крупные ямки, окруженные в виде ореола мелкими (см. рис. 5, з). Такой рисунок проявляет определенную последовательность разрушения первичное образование надрывов у крупных микроконцентраторов напряжений, а вторичное — у более мелких.  [c.27]

Определенные среды в данном материале вызывают, как правило, лишь один вид разрушения. Например, КПН латуней в парах аммиака имеет внутрикристаллпческий характер, а в растворах ртутных солей постоянно наблюдалось межзеренное разрушение. Для сплава на магниевой основе (А1 6%, Zn 1%) было показано, что в зависимости от состава коррозионной среды можно получить как межзеренное, так и внутризеренное разрушение. В растворе ЫаСЦ-КгСгаО при pH 5 — межзеренное разрушение, а при pH 8,1 — внутризереииое.  [c.75]

Структурные признаки термоусталостного разрушения не являются такими определенными, как, например, при длительном статическом или усталостном разрушении. Термоцикличес-кое нагружение создает в материале как циклическое, так и статическое повреждение. Их взаимное соотношение определяется тремя переменными значением максимальной температуры, уровнем действующей нагрузки и длительностью цикла. Изучение влияния каждого из этих факторов (при неизменных двух других) показывает, что характер термоусталостного разрушения с изменением соотношения указанных факторов изменяется от усталостного до статического, при этом наблюдаются все промежуточные состояния. Общая тенденция такова при невысоких значениях температуры, малых уровнях нагрузки и отсутствии выдержек в цикле при = тах наблюдаются признаки усталостного разрушения, увеличение температуры, нагрузки и длительности цикла приводит к статическому разрушению. В книге приведены фотографии, свидетельствующие о том, что часто излом имеет признаки как того, так и другого вида разрушения. Диаграмма структурных признаков термоусталостного разрушения, построенная с учетом всех трех факторов, позволяет классифицировать вид разрушения и установить его причины.  [c.191]

Коррозионная среда. В зависимости от состава коррозионной среды МКК аустенитных коррозионно-стойких сталей может развиваться с различными скоростями. Одни среды могут вызывать быстрое разрушение границ зерен до полной потери металлом механической прочности и пластичности, другие — более медленное межкристаллитное разрушение. Быстрое разрушение происходит в растворах азотной, серной и фосфорной кислот, смесях азотной и фосфорной кислот, в муравьиной и уксусной кислотах и др. Присутствие в таких растворах некоторых веществ приводит к значительному ускорению МКК- Так, действие сернокислотных рестворов более интенсивно при наличии в них определенных количеств сульфата железа, сульфата меди, роданистого калия или аммония, соединений серебра и двухвалентной ртути, шестивалентного хрома и т. д. Наиболее часто МКК коррозионно-стойких сталей и сплавов наблюдается в кислых растворах. Кислые среды считаются самыми опасными в отношении МКК и используются для выявления у металла склонности к этому виду разрушения по стандартным методикам.  [c.59]

Определение вязкости разрушения методом 1-интеграла. Испытания проводили по методике, описанной Лэнд-сом и Бигли [14]. При каждой температуре испытывали не менее трех образцов, имевших равную среднюю длину трещины. Образцы нагружали до различной величины приращения длины стабильно растущей трещины и затем разрывали, после чего проводили анализ поверхностей трещины, которые предварительно подвергали окислению методом термического окрашивания. Каждое значение/, полученное путем замера площади под кривой нагрузка — смещение, наносили на график в виде функции замеренного приращения длины трещины Да. Критическое значение lie получали экстраполяцией зависимости / = /(Аа) при нулевом приращении, т. е. в момент страгивания трещины.  [c.325]


Смотреть страницы где упоминается термин Определение вида разрушения : [c.64]    [c.40]    [c.653]    [c.425]    [c.57]    [c.356]    [c.42]    [c.310]    [c.79]    [c.54]    [c.36]    [c.126]   
Смотреть главы в:

Повреждение материалов в конструкциях  -> Определение вида разрушения



ПОИСК



Разрушение, виды

Разрушения определение



© 2025 Mash-xxl.info Реклама на сайте