Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы условной оптимизации

Методы условной оптимизации. Задачи условной оптимизации, заключающиеся в минимизации некоторого критерия оптимальности с ограничениями на область существования переменных проектирования, относятся к классу задач математического программирования.  [c.290]

При описании комплексной целевой функции нелинейными зависимостями от внутренних параметров задача оптимизации решается методами линейного программирования если же целевая функция является линейной функцией от внутренних параметров, то имеет место задача линейного программирования. В общем случае целевая функция может иметь несколько экстремумов, отличающихся по абсолютной величине. В зависимости от типа экстремума, в котором заканчивается поиск оптимального решения, различают методы поиска локального и глобального экстремума. Если на значение определяемых параметров наложены некоторые ограничения, то решение задачи синтеза механизмов осуществляется методами условной оптимизации. В противном случае (при отсутствии ограничений) при синтезе механизмов для поиска значений определяемых параметров используют методы безусловной оптимизации.  [c.316]


Методы условной оптимизации  [c.318]

Наиболее типичен синтез механизмов методами условной оптимизации, когда на внутренние параметры синтеза наложены определенные ограничения. Различают параметрические, дискретизирующие и функциональные ограничения. Параметрические ограничения, примером которых могут служить ограничения на длины звеньев, представляют собой систему неравенств  [c.318]

Методы условной оптимизации. Метод штрафных функций основан на преобразовании исходной задачи (3.3) с ограничениями к задаче без ограничений с применением к последней методов безусловной оптимизации. Преобразование проводится по формуле Ф(Х) =/ (Х)+0(Х), где Ф(Х) и F )—соответственно новая и первоначальная целевые функции, 0(Х) —функция штрафа, учитывающая нарушенные ограничения. В методе штрафных функций, называемом методом внешней точки, функция штрафа  [c.75]

В настоящее время трудно выделить какую-либо группу методов условной оптимизации, превосходящих по всем показателям методы других групп. Весьма популярными являются методы первой и второй групп. Особенно перспективны методы с модифицированной функцией Лагранжа. Результаты экспериментального тестирования и сравнение методов условной оптимизации имеются в [96, 216].  [c.148]

Методы поиска экстремума классифицируются по следующим признакам в зависимости от характера экстремума существуют методы условной и безусловной, локальной и глобальной оптимизации по числу переменных проектирования различают методы одномерного и многомерного поиска, а по характеру информации о виде целевой функции — методы нулевого, первого и второго порядков, причем в методах первого порядка используют градиент целевой функции, поэтому эти методы называются градиентными, в методах второго порядка применяют вторые производные, а в методах нулевого порядка производные не используют.  [c.281]

Объясните общность и различие методов штрафных и барьерных функций в задачах условной оптимизации.  [c.329]

При решении задач условной оптимизации целесообразно использовать методы безусловной оптимизации, учитывая большое количество разработанных по этим методам программ. С этой целью задача условной оптимизации сводится к задаче безусловной оптимизации устранением ограничений путем преобразования параметра XI, на значения которого наложены ограничения, в не-ограничиваемый.  [c.319]


В отличие от предьщущих методов при оптимизации в условиях ограничений в этом случае поиск должен начинаться из некоторой точки в области допустимых значений параметров D. Очевидно, что невыполнение этого требования делает проблематичным не только определение условного экстремума Q, но и само попадание в область D.  [c.155]

Метод отжига - метод поисковой оптимизации, в котором для увеличения вероятности выхода из областей притяжения локальных минимумов допускается переход в точки с худшим значением целевой функции с некоторой вероятностью Метод распространения ограничений - метод решения задач условной оптимизации, основанный на сокращении интервалов значений управляемых переменных (или мощности множеств значений этих переменных) благодаря учету исходных ограничений. Сокращенные интервалы в явном виде определяют подмножество допустимых решений  [c.312]

Первый метод с определенной степенью условности можно назвать методом приближенной оптимизации, второй — более точной оптимизации. Наиболее простым и распространенным является метод перебора вариантов. В соответствии с этим методом  [c.77]

Суть метода заключается в преобразовании задачи условной оптимизации (4.19) в задачу безусловной оптимизации с помощью образования новой целевой функции  [c.166]

Важная идея методов штрафных функций - преобразование задачи условной оптимизации в задачу безусловной оптимизации путем формирования новой целевой функции Ф(Х), за счет введения в исходную целевую функцию F(X) специальным образом выбранной функции штрафа S(X)  [c.167]

Первое направление охватывает большую группу государственных стандартов и рекомендаций, которые способствуют рациональности выбора ограничительного состава форм технологических документов, применительно к условиям работы предприятия или выбранного метода обработки оптимизации записи информации за счет допускаемых сокращений, применения соответствующих условных графических обозначений оптимизации оформления и обращения технологических документов.  [c.27]

В основу алгоритмов минимизации гладких функций на ограниченных множествах положены следующие идеи. Общая задача математического программирования может быть преобразована в задачу либо последовательность задач безусловной оптимизации. Такие алгоритмы основаны на использовании метода центров [225], замены независимых переменных [211], применении различных вариантов штрафных функций и модифицированных функций Лагранжа [215, 217, 218]. Можно отметить также метод [225], позволяющий перейти к безусловной минимизации функции максимума. Задача условной оптимизации может быть аппроксимирована последовательностью задач линейного или квадратичного программирования. К этой группе относятся методы возможных направлений [228], линеаризации [215], линейной аппроксимации [96], проектирования [218].  [c.148]

Еще более проблематичным представляется применение аналитических методов при отыскании условных экстремумов функции цели, что характерно для реальных задач оптимизации ЭМУ при наличии многочисленных ограничений. Ограничения, накладываемые на область определения функции цели, приводят к возможному несовпадению условных и локальных экстремумов, а поэтому уравнения (5.38) в данном случае вообще нельзя рассматривать в качестве необходимых условий для определения точек экстремума.  [c.149]

Разработаны многочисленные методы рещения задачи оптимизации при различных видах целевой функции, уравнений связи и типах ограничений, которые условно можно подразделить на две группы а) классические (метод дифференциального исчисления, метод множителей Лагранжа, вариационное исчисление) б) метод математического программирования (методы линейного и нелинейного программирования, метод динамического программирования, принцип максимума Понтрягина и др.).  [c.555]


Ниже на нескольких примерах показана эффективность одного из распространенных методов оптимизации — метода множителей Лагранжа, широко используемого при отыскании условного экстремума функции нескольких переменных.  [c.555]

Решение задачи связано с нахождением условного экстремума. Для нахождения безусловного экстремума задачу необходимо преобразовать так, чтобы она стала задачей на безусловный минимум. Это преобразование может осуществляться различными способами, выбор которых зависит от сложности и трудоемкости вычислений. Одним из эффективных способов является метод неопределенных множителей Лагранжа. Практические приемы преобразования и методы оптимизации решений достаточно подробно освещены в работах [21, 66].  [c.85]

Для решения этих задач необходимы соответствующие методы расчета и анализа. Их можно подразделить на методы расчета и анализа при проектировании и эксплуатации и методы расчета установок как объектов управления. Это выделение условно, так как проектирование нового объекта должно выполняться совместно с проектированием системы его управления, а совершенствование системы управления действующего объекта выполняется обычно совместно с ею рационализацией и оптимизацией.  [c.9]

Применяемые методы оптимизации МВУ при их проектировании можно условно подразделить на две основные группы.  [c.139]

Таким образом, метод поиска оптимального состава в каждом конкретном случае будет зависеть от конкретных задач, стоящих перед экспериментатором, от количества априорной информации и результатов предварительных, испытаний, даже от времени и количества имеющегося сырья. От последних двух условий может зависеть план эксперимента (полный факторный эксперимент или его дробная реплика). Но всегда при разработке оптимальных составов пине используют методы, их показатели и требования на показатели качества, обобщенные в систему моделирования и оптимизации функциональных свойств. При этом может быть применена оценка обобщенной функции полезности по частным функциям полезности, по частным функциям, выраженным в условных единицах (баллах) в соответствии с указанной выще системой оптимизации.  [c.126]

Существенно отличается подход к решению задач с единственным и несколькими экстремумами. Во втором случае обычно требуется найти главный из них (так называемый глобальный). Наличие или отсутствие ограничений на искомые переменные относит задачу к области условной или безусловной оптимизации. В свою очередь линейность целевой функции или ограничений обуславливает использование методов линейного или нелинейного программирования. При постановке задачи существенное значение имеет то, что исходная информация не полностью определена и характеризуется определенными вероятностными свойствами. Такую задачу следует решать методами стохастического программирования. Наконец, подход к решению оптимизационной задачи значительно изменяется, если целевая функция приобретает не скалярный, а векторный вид. Тогда возникает необходимость оптимизации по нескольким независящим критериям. После этой краткой общей классификации остановимся более подробно на типах оптимизационных задач, наиболее подходящих для разработки приборов квантовой электроники. К таким задачам прежде всего относятся задачи параметрической оптимизации.  [c.121]

Методы условной оптимизации можно разделить на следующие три группы ориентированные на решение задач НЛП определенных классов (задачи сепарабельного, квадратичного, геометрического программирова-  [c.157]

Существует и используется большое число математических методов численного решения задач условной оптимизации (см., например, [18]). Эти методы, так же как ih разработанные на их основе алгаритмы и программы, различаются требованиями к начальному приближению решения, скоростью сходимости процесса, чувствительностью к погрешностям в задаваемых параметрах, точностью локализации координат экстремума, объемом необходимой оперативной памяти и требованиями к быстродействию ЭВМ, удобством работы и другими характеристиками. В некоторых случаях экстремум функции (22.8) иш ется непосредственно в заданной допустимой области, другие методы основаны на решении с + с( > +... +нелинейных уравнений  [c.187]

Вообщ,е задачи условной оптимизации более сложны, чем задачи безусловной оптимизации. Для их решения используют специально разработанные методы программирования с ограничениями. Одним из таких методов, которые относятся к методам поиска глобального экстремума, является метод сканирования, состоящий в том, что допустимая область поиска, определяемая системой ограничений, разбивается на к подобластей, в центре каждой из которых определяется значение целевой функции. Если целевая функция зависит от п параметров, необходимо выполнить вариантов расчета. Для надежного определения глобального минимума необходимо увеличивать число к подобластей, что приводит к большим затратам машинного времени.  [c.319]

В зависимости от характера экст ремума различают методы условной и безусловной, а также локальной и оощей оптимизации. Наиболее удобно и просто реализовать на ЭВМ методы поиска безусловных локальных экстремумов.  [c.30]

Изложение различных методов решения задач минимизации (в том числе задач условной оптимизации, линейного проп аммирования, дискретной оптимизации) можно найти в [6, 11, 14, 22, 66, 78].  [c.143]


Третий этап — формирование модели (либо совокупности моделей) взаимодействия разрабатываемой конструкции и внешней среды, т. е. модели функционирования, построенной для всех этапов жизненного цикла изделия с учетом зависимостей, отража-10ЩИХ реальные физические процессы и трансформации объекта проектирования в процессе эксплуатации. Основная цель этого этапа — исследование моделей функционирования по всем параметрам, определяющим качество искомого технического решения. Именно на этом этапе разработки целесообразно привлечь методы оптимизации с целью выявления наилучшего варианта конструкции. Наиболее существенные принципиальные трудности, возникающие при реализации решения многокритериальная природа задачи необходимость учета большого числа факторов многообразие критериев условной оптимизации отсутствие простых и достаточно отработанных способов вычисления условных функционалов, задания конструктивных и технологических ограничений при моделировании реальных физических процессов и др. В связи с этим многовариантное исследование прочности конструкций на основании анализа моделей функционирования для получения рациональных, надежных и всесторонне обоснованных конструкторских решений следует признать более целесообразным, чем глобальная оптимизация разрабатываемых конструкций (что, конечно, не исключает возможности локального использования методов оптимизации конструкций на отдельных этапах проектирования).  [c.288]

Способ условных минимумов изложен выше в самом прозрачном, но не всегда самом быстром варианте. Ценой усложнения программы можно при поиске условных минимумов пользоваться не сплошным направленным перебором, а методом дихотомии и т.д. Можно поиск экстремума составить из двух циклов — предварительного с большим шагом поиска и уточняюш,его (с малым шагом), обеспечиваюш,его результат с заданной точностью и выполняемого в границах уже найденного оптимального параллелепипеда решений. Однако, если оптимизация СРК выполняется в текуш ем рабо-190  [c.190]

Возможность существования особых точек (седловых, типа гребней и оврагов и т. д.), разрывности функционала и изменений переменных условных экстремумов на границах допустимых областей, многосвязности, многоэкстремальности функционала, ограничений типа неравенств, дискретность переменных и т. д. — все это приводит к практической непригодности аналитических методов оптимизации теплоэнергетических установок. Применение ЭВМ. и численных методов нелинейного программирования позволяет в основном преодолеть эти затруднения. При малом числе оптимизируемых переменных и при узких пределах их изменения отыскание глобального экстремума практически обеспечивает метод сплошного перебора на ЭВМ вариантов путем обхода в определенном порядке узлов многомерной сетки в пространстве независимых переменных и вычисление в каждой точке значений функций ограничений и функционала. При этом отбрасываются те точки, в которых ограничения не выполняются, а среди точек, для которых ограничения справедливы, выбирается точка с наименьшим (или наибольшим) значением функционала. При оптимизации по большому числу параметров применяются методы направленного поиска оптимума градиентные, наискорейшего спуска, покоординатного спуска (Л. 21].  [c.57]

Задача оптимизации сложной теплоэнергетической установки является многоэкстремальной, имеющей ряд локальных экстремумов. Для поиска среди них глобального экстремума используются комбинации методов случайного поиска с методами направленного поиска. По существу это заключается в том, что спуск производится из разных подобластей с последующим анализом кривых, соединяющих экстремальные и особые точки. Наличие ограничений превращает задачу поиска безусловного экстремума в задачу условного экстремума (возможность нахождения условного экстремума на границе).  [c.58]

Для проведения в рамках САПР технико-экономической оптимизации проектируемых изделий предварительно создается адекватная данной конструкции технико-экономическая условная модель взаимосвязей отобранных логическими и математическими методами стандартизационных, конструкционных, производственных, эксплуатационных, экономических параметров и показателей. По таким моделям формируются математические модели взаимосвязи различных технических и экономических показателей, в том числе и взаимосвязи по выбранным критериальным экономическим показателем. Минимизируя (максимизируя) выбранный критериальный показатель в множестве возможных вариантов конструкций, анализируемых в процессе автоматизрованного проектирования, находят оптимальное сочетание значений ее параметров.  [c.119]

Проблема оптимального проектирования конструкций из волокнистых композитов не имеет законченной математической формулировки, В ряде случаев [4, 18, 49, 59, 81, 86, ИЗ, 177, 191, 192, 258] задача оптимизации формулируется как задача о минимуме некоторого функционала (чаще всего массы) при определенных ограничениях геометрического, механического и технологического характера. Существующие методы решения таких задач [16, 67, 99, 202, 205, 216] не гарантируют достижения глобального минимума, и поэтому получающееся решение может считаться оптимальным лишь условно. В других случаях решение задачи строится на основе некоторых эвристических дополнительных предположений (равнонрочность, равнодеформируемость элементов и т. п.), выполнение которых якобы гарантирует улучшение параметров изделия.  [c.46]

Целью оптимизации является отыскание внутри этой области изображающей точки, обращающей в максимум критерий качества (отыскание оптимального управления). Очевидно, при наличии ограничений точка оптимального управления может лежать на границе области работоспособности. Таким образом, задача оптимизации струйных элементов является задачей на условный экстремум. Задача отыскания условного экстремума может быть решена методами вариационного исчисления, либо методами линейного или нелинейного программирования и т. д. в зависимости от математического выражения целевой функцип и наложенных ограничений.  [c.27]


Смотреть страницы где упоминается термин Методы условной оптимизации : [c.347]    [c.283]    [c.186]    [c.199]    [c.53]    [c.189]    [c.471]    [c.152]    [c.158]    [c.155]    [c.216]    [c.244]   
Смотреть главы в:

Теория механизмов и машин  -> Методы условной оптимизации


Основы термодинамики (1987) -- [ c.186 ]



ПОИСК



Методы оптимизации

Оптимизация



© 2025 Mash-xxl.info Реклама на сайте