Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения и деформации в пределах упругости — Зависимости (по закону

Напряжения и деформации в пределах упругости — Зависимости (по закону Гука) 14  [c.550]

Напряжения и деформации в пределах упругости — Зависимости (по закону Гука) 3—14 —— кривых брусьев 3—112 Напряжения затяжки резьбовых соединений 4 — 534  [c.443]

В третьей главе приведен обзор по деформационному упрочнению поликристал-лических ОЦК-металлов. Логическим центром данной главы и, может быть, всей книги является раздел о структурном обосновании перестройки кривых нагружения в координатах 5 — V"е (истинное напряжение— истинная деформация в степени 0,5), которая представляет эффективный метод исследования закономерностей деформационного упрочнения в зависимости от самых различных внутренних и внешних факторов. Именно данный метод позволил связать воедино все этапы пластической деформации, выстроив в одну цепочку предел упругости, критические деформации начала и конца образования ячеистой дислокационной структуры, ее начальный размер и закон дальнейшего изменения. В конечном счете, даже условие перехода к разрушению (пластическому) также определяется коэффициентом деформационного упрочнения.  [c.4]


Напряжения третьего рода определяются структурой и химическим составом металла. Напряжения второго рода являются начальными и формируются при изготовлении конструкции. Они увеличивают коэрцитивную силу и образуют в металле поля остаточных напряжений определенного знака. Напряжения первого рода обусловлены воздействием эксплуатационных нагрузок. Эти напряжения, накладываясь на предыдущие, могут как уменьшать, так и увеличивать Щ в области упругих деформаций в зависимости от направления действия последних. Однако при переходе в упруго-пластическую область напряжения первого рода оказывают преобладающее влияние, и под их действием коэрцитивная сила возрастает по закону, близкому к линейному, вплоть до Я , соответствующей пределу прочности данного материала.  [c.124]

Упругостью называется свойство материала, благодаря которому деталь восстанавливает после снятия нагрузки свои первоначальные форму и размеры. При нормальных температурах, ограниченных скорости и продолжительности деформации деталь с достаточной точностью можно считать упругой до тех пор, пока возникающие в ней напряжения и деформации не превзошли определённого значения предела упругости). При упругом состоянии имеется однозначная зависимость между нагрузкой и деформациями, формулируемая по закону Гука в общем виде так деформация пропорциональна нагрузке.  [c.16]

Вариационные принципы. Вариационные принципы Лагранжа и Кастильяно для задач ползучести являются, очевидно, простой перефразировкой соответствующих принципов для нелинейно упругого тела, поскольку исходная гипотеза состоит в допущении зависимости потенциального типа между напряжениями и деформациями или скоростями деформации. Систематическое развитие приближенных методов, основанных на принципе Кастильяно, принадлежит Л. М. Качанову. При степенном законе установившейся ползучести с возрастанием показателя п в ряде случаев распределение напряжений мало отличается от того, которое соответствует предельному состоянию идеального жестко-пластиче-ского тела. Таким образом, вводится понятие о предельном состоянии ползучести напряжения о / для этого состояния находятся по схеме жестко-пластического тела, причем предел текучести зависит от характера нагрузки. Приближенные значения скоростей находятся прямым применением теоремы Кастильяно. Более точные результаты получаются, если представить компоненты напряжения в виде  [c.134]


Чтобы выяснить изменение напряженного состояния в материале при отражении от свободной поверхности плоской упругопластической волны нагрузки, амплитуда которой сравнима с пределом упругости по Гюгонио, проанализируем волновую картину в материале при соударении двух дисков [269]. Для упрощения анализа ограничимся рассмотрением соударения пластины определенной толщины, движущейся со скоростью va, с неподвижным образцом удвоенной толщины из того же материала. Не ограничивая общности рассмотрения, принимаем а) скорость распространения напряжений при упругом поведении материала (скорость распространения упругих возмущений) равна скорости распространения продольной упругой волны ао независимо от интенсивности волны как при нагрузке, так и при разгрузке б) пластическая деформация одного знака не меняет предел текучести материала при перемене знака деформации, т. е. эффектом Баушингера можно пренебречь в) скорость распространения возмущений, связанных с пластической деформацией, изменяется в соответствии с изменением величины деформации по одному и тому же закону при нагрузке и разгрузке, т. е. эффектами, обусловленными вязкой составляющей сопротивления при распространении упруго-пластических волн, пренебрегаем. Последнее допущение требует пояснения. Как показано выше, при распространении упруго-пластической волны вблизи поверхности нагружения конфигурация фронта волны меняется в связи с проявлением зависимости сопротивления сдвигу от скорости пластического сдвига. При удалении от контактной поверхности конфигурация волны за упругим предвестником приобретает стабильность и может быть определена на основе деформационной теории распространения волн. Анало-  [c.216]

При еще больших деформациях пластические свойства материала становятся преобладающими, и представляется возможность пренебречь упругими деформациями по сравнению с пластическими. Тогда диаграмма растяжения может быть схематизирована кривой, имеющей вертикальный линейный участок (рис. 4, в). Соответственный вид приобретает и линия разгрузки при напряжениях, меньших предела текучести, деформации, принимаются равными нулю, и среда считается абсолютно жесткой, а при напряжениях, больших предела текучести, изменение деформаций происходит по некоторому закону в зависимости от вида диаграммы испытания. Среда, наделенная указанными свойствами, называется жестко-пластической. Эта схема эффективна для анализа процессов ковки или волочения, т. е. для решения такого рода задач, в которых рассматриваются большие пластические деформации.  [c.16]

Выполнены многочисленные экспериментальные исследования по определению модулей упругости резин и анализу пределов применимости линейного закона связи напряжений с деформациями. Типичная зависимость напряжение—деформация при растяжении-сжатии, приведенная в работе [247], показана на рис. 2. При больших деформациях эта кривая имеет различный вид для истинных и условных напряжений.  [c.11]

Скорость упругой деформации определяют по закону Гука. Примем здесь для простоты, что напряжение не превышает предела упругости при данной температуре, тогда = 0. Деформация ползучести при наличии подобия и постоянном напряжении определяется соотношением (2). Тогда скорость ползучести (в случае степенной зависимости) будет  [c.92]

Классическим примером в этом отношении может служить теория напряжений и деформаций в идеальном однородном теле, когда в точке тела выделяется бесконечно малый элемент в виде параллелепипеда и рассматривается его напряженное состояние. Связь между деформациями и напряжениями описывает закон Гука. Развитие этого подхода с учетом возникновения пластических деформаций позволяет найти зависимости между напряжениями и деформациями и за пределами упругости [111]. Необходимость учитывать реальные особенности строения материалов привела к созданию таких наук, как металловедение, которая изучает и устанавливает связь между составом, строением и свойствами металлов и сплавов. Для материаловедения как раз характерно рассмотрение явлений, происходящих в пределах данного участка (зерна, участка с типичной структурой), обладающего основными признаками всего материала. Изучение микроструктур сплавов и их формирования явлений, происходящих по границам зерен, термических превращений и других процессов, проводится в первую очередь на уровне, который описывает микрокартину явлений.  [c.60]


В дальнейшем ограничимся при решении задач лишь случаем изотропного тела. Этот случай имеет большое практическое значение. Такие материалы, как литое железо и сталь, по их свойствам в пределах упругости можно без значительных погрешностей принимать за изотропные. Зависимость между напряжениями и деформациями в этом слзгчае выражается посредством двух упругих постоянных, и мы ее без затруднения устцровим, если сделаем следующее вполне естественное допущение. Положим, что в случае изотропного материала направления главных напряжений совпадают в каждой точке с направлениями главных деформаций и, следовательно, угол между двумя взаимно перпендикулярными площадками искажается лишь в том случае, если есть соответствующие касательные напряжения. Выделим из тела плоскостями, нормальными к главным напряжениям, бесконечно малый прямоугольный параллелепипед. В силу сделанного допущения углы этого параллелепипеда при деформации не искажаются и полное изменение формы выделенного элемента определяется тремя главными деформациями вхх, вуу и е (координатные оси х,у, г направим параллельно главным напряжениям в рассматриваемой точке). Соответствующие им напряжения будут Хх, У у и Согласно обобщенному закону Гука каждая из составляющих напряжения представляется линейной функцией составляющих деформации. Например, Хх можно представить в таком виде  [c.45]

Многие материалы, в частности металлы, в пределах упругих деформаций не проявляют зависимости сопротивления от истории нагружения, и последняя влияет только на пластическое или вязко-упругое течение., В связи с этим для металлов величину напряжений следует связать с развитием пластической составляющей деформации Еп = г—а/Е (пренебрегая эффектами вязко-упругости). По аналогии, с выражениями (1.2а) для материала, не чувствительного к истории нагружения в упругой области, получим в общем вйде связь сопротивления с законом пластического течения a=o[t, en(S)]. а = сг[еи, еп( )]. Ркпользуя разложение параметра испытания типа (1.3), вместо уравнений (1.2в) получим  [c.21]

В теории упругости термин чистый изгиб призматического бруса подразумевает такую деформацию, при которой, кроме условий (12.1), имеет место строго определенное распределение на торцах поверхностной нагрузки, статическим эквивалентом которой являются моменты Ш, а именно распределение этой нагрузки по линейному — в зависимости от у (или х) — закону, если чистый изгиб происходит в плоскости Оуг Охг). При этом во всем брусе отсутствуют не только поперечные и продольные силы и крутящий момент, но и самоуравновешенные в пределах поперечного сечения напряжения, в том числе касательные напряжения, д следовательно, если учесть закон Гука, то отсутствуют и сдвиги.  [c.97]

Для модели нелинейной упругопластической среды (рис. 7.1,г) характерно отсутствие предела текучести — пластическая деформация возникает при любом отличном от нуля напряжении. При нагружении зависимость между напряжением и деформацией нелинейна, упрочнение материала нелинейное. Разгрузка для такой среды происходит по закону линейной упругости с модулем упругости Е. При повторном нагружении пластическое деформирование происходит только после достижения напряжения, с которого началась разгрузка. В принципе, нелинейная уиругонластическая среда при разгрузке может вести себя и как нелинейная пластическая.  [c.147]

Существуют пластические массы — эластомеры, которые обладают способностью деформироваться в значительных пределах, имеют так называемую высокоэластическую деформацию. Высокоэластическая деформация исчезает при снятии нагрузки, но от обычной упругой деформации отличается по величине и по механизму проявления. Напомним, что упругая деформация стали составляет около 0,1% и резко отграничена пределом текучести. Деформация эластомеров может превысить 1000 , а модуль их упругости очень мал и колеблется в пределах 20—200 кГ1см . При растяжении высокоэластичных тел зависимость между напряжением и деформацией не является линейной. Диаграмма деформации здесь имеет вид кривой, напоминающей по форме букву 5 (рис. 184). Таким образом, высокоэластические деформации не подчиняются закону Гука, и модуль упругости эластомеров является переменной величиной. Для суждения об упругих свойствах высокоэластичных материалов на основании кривой растяжения обычно пользуются значением  [c.309]

Обсуждаемые в данной книге приложения будут относиться к случаю упругого материала, для которого зависимости напряжения от деформаций выражаются хорошо известным и относительно. простым законом Гука, который будет формально выписан в 3.1 при обсуждении задач, теории упругости. Реальные материалы не следуют этому закону в точности. Некоторые, подобно чугуну, обладают слабо, нелинейной зависимостью напряжения от деформаций. Но даже те, у которых на первый взгляд эта зависимость линейна вплоть до предела упругости, демонстрируют едва заметное различие в поведении при нагружении и разгрузке (упругий гистерезис, который имеет, по-видимому, существенное значение в связи с усталостью материалов) при этом обнаруживаются и температурные эффекты, проявляющиеся в различии температурных постоянных при изотермическом (при очень медленном изменении деформаций) и адиабатическом (при очень быстром изменении деформаций) нагружении, они до некоторой степени аналогичны электростатическим эффектам. Подобные отклйнения от закона Гука, как правило, не важны для практических задач и не будут рассматриваться здесь.  [c.28]


На этой диаграмме (см. рис. 76, а) точка а соответствует пределу пропорциональности, так что при сг < сг р выполняется обобщенный закон Гука (2,147), и при растяжении стержня согласно (2.153) имеем <7 = Ее. Недалеко от точки а лежит точка соответствующая пределу упругости <Туцр и определяющая область нелинейной упругости (участок а6), когда нарушается закон (2.14 7) и имеет место более общая зависимость (2.145). Участок диаграммы а < сГу р характерен тем, что после снятия нагрузки остаточных деформаций не остается, т. е. разгрузка идет по той же линии ОаЬ, что и нагрузка, только в обратном направлении. При полной разгрузке (сг = 0) деформация обращается в нуль. Однако в области СТ процесс деформации становится неустойчивым (участок с ) и только при и = ((7 к — предел текучести) удлинение образца заметно увеличивается материал, говорят, начинает течь , т. е. образец без изменения нагрузки значительно увеличивает свою длину. Поскольку деформация идет почти без изменения объема , то при течении на образце образуется характерное сужение — шейка . Участок (площадка текучести) соответствует пластическому состоянию материала, и если она строго горизонтальна, то материал называют идеально пластическим. После точки Л наступает упрочение материала, т. е. монотонное возрастание напряжения, а затем (точка в ) — разрушение (предел прочности). Участок диаграммы от Ь до е характерен тем, что если в какой-то момент (точка М) снять нагрузку, то уменьшение деформации пойдет по линии ММ, приводя к остаточной деформации ОМ , при повторном нагружении образец будет следовать новой кривой М М .  [c.389]


Смотреть страницы где упоминается термин Напряжения и деформации в пределах упругости — Зависимости (по закону : [c.17]    [c.140]    [c.202]    [c.134]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.0 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.0 ]



ПОИСК



228 — Деформации — Зависимость

293 — Зависимость от напряжения упругая

597 — Деформации и напряжения

Деформации в пределах упругости и напряжения в пределах упругости

Деформации в пределах упругости упругие

Деформации и напряжения в пределах упругости

Деформация в пределах упругости

Деформация упругая

Зависимости между напряжениями и деформациями в пределах упругости. Закон Гука

Зависимости напряжений от деформаций

Зависимость напряжений от упругих деформаций. Закон

Закон упругости

НАПРЯЖЕНИЯ ЗА ПРЕДЕЛ УПРУГОСТ

Напряжения 5 — Зависимости

Напряжения Зависимость от деформаций в пределах

Напряжения за пределами упругости

Напряжения и деформации в пределах

Напряжения и деформации в пределах упругости — Зависимости (по закону Гука)

Напряжения упругие

Предел упругости

Упругость напряжение

Упругость предел (см. Предел упругости)



© 2025 Mash-xxl.info Реклама на сайте