Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Типы и скорость ультразвуковых волн

Типы и скорость ультразвуковых волн  [c.18]

Для повышения объема информации при определении физико-механических свойств измеряют скорости ультразвуковых волн различных типов. Это достигается применением ЭМА-метода, обеспечивающего одновременно повышение точности измерения за счет устранения слоев контактной жидкости. Используя ЭМА-преобразователи, можно добиться излучения и приема одновременно трех волн — продольной и двух поперечных. Изменяя скорость и коэффициент затухания каждой волны, определяют анизотропию, упругие постоянные, главные направления кристаллографических осей. Измерив таким образом акустическую анизотропию, можно оценить некоторые технологические параметры металлических листов, например их штампуемость.  [c.286]


Ранее нами была проведена оценка статистической связи между пределом прочности при сжатии и скоростью продольных волн для стекловолокнитов типа премикс [125]. Установлено, что связь между этими параметрами для данного материала описывается линейной зависимостью с высоким коэффициентом корреляции Гй=0,9. Оценка связи между пределом прочности при изгибе и скоростью продольных волн показала, что коэффициент корреляции значительно ниже rft=0,69, что объяснено различием характера деформирования при ультразвуковых (волны, сжатия) и механических испытаниях (деформации изгиба).  [c.138]

Контроль сплошности шпилек для обнаружения поперечных трещин проводят ультразвуковым методом с применением прямого преобразователя на рабочую частоту 5 МГц. Поперечное расположение дефектов требует прозвучивания шпилек продольными волнами со стороны торца и поперечными со стороны цилиндрической части (рис. 7.12). Настройку чувствительности и скорости развертки проводят по специальному эталону, представляющему собой шпильку с искусственными дефектами типа надреза глубиной 1 мм. Шпильки считают бракованными, если обнаружены сигналы, амплитуда которых равна или превышает высоту сигналов от дефектов в эталоне.  [c.230]

ВОДИЛСЯ в кристаллах /г-типа и поле прикладывалось так, чтобы направление движения электронов совпадало с направлением распространения ультразвуковой волны), причем генерация второй гармоники минимальна в области напряженности поля, при которой дрейфовая скорость электронов равна скорости звука. При больших напряженностях поля гармоника сильно возрастает.  [c.347]

Для ИХ определения необходимо сделать измерения скоростей распространения ультразвуковых волн в шести неэквивалентных кристаллографических направлениях [100], [010], [001], [ПО], [101], [011] (см. работу [101]). В направлении [010] моноклинного кристалла все три упругие волны, распространяющиеся вдоль него, являются чистыми. Кроме того, вдоль направлений [ООП, [101], [100] из трех волн одна, с поляризацией вдоль оси [010], является чисто сдвиговой. Эффективная жесткость для этих трех типов волн непосредственно определяет модули и С44.  [c.265]

Физические основы метода. Ультразвуковые колебания, являющиеся упругими колебаниями очень высоких частот, получаются обычно с помощью пластины из пьезокварца, расположенной между двумя металлическими обкладками. На обкладки подается переменное напряжение от генератора высокой частоты радиотехнического типа. Под влиянием этого напряжения кварцевая пластина начинает колебаться с той же частотой. Эти колебания с помощью промежуточной среды (вода, масло, вазелин, ртуть) вводятся в испытуемое изделие, в котором распространяются более или менее узким пучком со скоростью, равной скорости звука. Длина волны этих колебаний зависит от частоты колебаний кварцевой пластины и скорости звука в данной среде (табл. 10).  [c.80]


Ультразвуковые волны Рэлея и Лэмба позволили создать линии задержки с плавной регулировкой задержки сигнала, что осуществляется помещен.ием приемника на поверхности звукопровода и перемещением его по ней. Кроме того, вследствие локализации волн Рэлея и Лэмба в тонком слое твердого тела стало возможным существенно сократить габариты ультразвуковых линий задержки например, звукопроводы стали изготовлять в виде металлических лент. И, наконец, что самое главное, использование волн Лэмба, обладающих дисперсией групповых скоростей, позволило создать принципиально новый тип ультразвуковой линии задержки — линию с зависимостью времени задержки от частоты (так называемую дисперсионную). Такая линия, как будет описано в 3 настоящей главы, позволила, например, увеличить дальность действия радарных установок.  [c.137]

Продольные волны. Продольные волны получаются, как уже сказано, в том случае, когда движение частиц в среде происходит параллельно направлению распространения волны. Эти волны мы будем называть волнами типа . Ультразвуковые волны типа L применяются до настоящего времени наиболее часто, так как они распространяются как в твердых телах, так и в жидкостях или газах, и их легко возбуждать и принимать. Продольные волны в большинстве сред распространяются с большой скоростью.. В случае ультразвука длины волн легко могут быть сделаны малыми по сравнению с поперечным сечением площади излучателя. Это обстоятельство позволяет сконцентрировать энергию в луче, угол расхождения которого может быть также сделан весьма небольшим.  [c.12]

Теоретическое исследование типов ультразвуковых волн и скоростей их распространения. Как уже упоминалось, существует несколько типов волн. Выше было дано краткое описание продольных ( -волн), волн сдвига (5-волн) и поверхностных волн. Теоретическое исследование этих типов волнового движения является весьма важным, так как оно устанавливает связь между отдельными формами упругих колебаний (звук, вибрации, ультразвук и т. д.) и позволяет уяснить характер явлений в области ультразвуковых волн.  [c.39]

При контроле котельных труб на трубопрокатных и котельных заводах используются установки для автоматического контроля сплошности, позволяющие выявлять дефекты типа трещин, плен, рисок, закатов и т. п., имеющих преимущественно продольное направление. Для каждого диаметра и толщины стенки существует определенный угол падения ультразвуковых колебаний, при котором достигается максимальная чувствительность. Трубы малых и средних размеров целесообразно контролировать нормальными волнами, толстостенные— сдвиговыми [7J. Ультразвуковой контроль котельных труб производится с применением отечественных установок типа ИДЦ-ЗМ, ИДЦ-6, ИДЦ-8, УДЦ-4М, Днепр , Кристалл-1 и др. В этих установках трубы перемещают поступательно через вращающиеся искательные головки. Сканирование трубы осуществляется по спирали с малым шагом. Универсальной является установка ИДЦ-6, предназначенная для контроля труб диаметром 30—114 мм со скоростью до 3,2 м/мин при одном датчике и до 6 м/мин при двух.  [c.127]

Экспериментатор может сделать за конечный промежуток времени лишь некоторое количество дел. Я нахожу обязательным, чтобы в лаборатории было готово к применению достаточное число методов измерения основных величин с тем, чтобы экспериментатор был, насколько это возможно, независим от техники в выборе направления исследований. Каждое десятилетие, начиная, конечно, с середины XIX столетия, характеризовалось чрезмерным использованием какого-то одного из известных в то время методов измерений, ограниченность которого много раз подсознательно предполагалась при попытках извлечь из него новые возможности. Одним из многих недавних примеров служат ультразвуковые методы были проделаны десятки тысяч измерений скорости волны в буквально сотнях типов конструкций и элементов в широком диапазоне температур при различных внешних давлениях и т. д., в результате этого за последние пятнадцать лет образовалась столь обширная литература, что трудно даже перечислить названия работ, не говоря уже о том, чтобы критически рассмотреть их. Вместе с тем лишь относительно немногие исследования по применению ультразвука касались различных аспектов общей механики твердого тела и в еш,е меньшем числе работ ставился вопрос об использовании для интерпретации результатов линейной теории упругости.  [c.29]


Скорости распространения ультразвуковых колебаний в однородных телах зависят от их свойств и размеров, а также от типа волн.  [c.63]

По графикам распределения величины построенным на основании данных ультразвукового профилирования в горизонтальных шпурах и на образцах пород, наблюдалось закономерное уменьшение модальных значений скорости относительно По данным детального инженерно-геологического обследования образцов выветривание не влияло на значение отсутствовала также поправка за различие типа волн в шпурах и на образцах, поскольку исследовались шпуры малого диаметра при ц = 0,3, т. е. когда регистрировались практически чисто поперечные волны (см. рис. 57).  [c.220]

В металлах возбуждаются все типы волн, в газах и жидкостях— только продольные волны. Скорость распространения ультразвуковых волн зависит от тина волны, илотности и упругих свойств среды. Для ультразвуковых колебаний характерны те же явления прелом--Ления, отражения, дифракдии, интсрферскцин, реверберации, что и для любых волновых движений [7, 10, 21]. В твердых телах скорость распространения упругих волн зависит от типа волны и, кроме того, от размеров тела, в котором она распространяется. Скорость распространения сдвиговых волн определяется модулем сдви-та и плотностью.  [c.116]

В течение последних 15 лет в области исследования нелинейности при малых де( юрмациях появились три новых пути, которые не представляют собой ни повторения, ни переадаптации, ни просто улучшения экспериментов, проведенных в XIX веке или начале XX века. Определение констант упругости с использованием скорости распространения волн в экспериментах, применяющих ультразвук, будет изложено в главе III (раздел 3.39). Вообще говоря, амплитуды этих волн были чрезвычайно малы. В более новых исследованиях использовались несколько большие амплитуды, причем часто говорилось о волнах конечной амплитуды, хотя на самом деле она конечна только по отношению к обычно используемым чрезвычайно малым амплитудам. Нелинейность функции отклика при инфинитезимальных де( юрмациях приводит к негармоническим явлениям, экспериментальное обнаружение параметров которых дает меру отклонения от обычно принимаемого линейного закона Роберта Гука. Такие исследования, совместно с определением во втором типе эксперимента коэффициентов сжатия посредством отыскания скоростей распространения ультразвуковых волн при различном давлении в окружающей среде, из которых могут быть найдены константы упругости третьего порядка, указывают на определенно новое и интересное направление поиска.  [c.203]

Эта специфика прежде всего выражается в реальной и широко используемой возможности генерирования плоских или квазипло-ских волн, в особом значении импульсного режима излучения, в воздействии мощного ультразвука на среду и ее реакции на это воздействие, в сильном поглощении ультразвуковых волн в газах и возможности распространения сдвиговых волн в жидкостях, в отчетливом проявлении нелинейных акустических эффектов в жидкостях и твердых телах, постоянных сил в ультразвуковом поле и т. д. Соответственно на первое место в ультраакустике выходят вопросы распространения плоских волн, их поглощения, отражения, преломления, прохождения через слои, фокусирования, рассеяния, анализ нелинейных эффектов, пондеромоторных сил в поле плоских волн, дифракционных и интерференционных эффектов в поле реальных излучателей ультразвуковых пучков вместе с анализом отклонений характеристик ультразвукового поля в ограниченных пучках по сравнению с полем идеальных плоских волн, распространения различных типов ультразвуковых волн в безграничных и ограниченных твердых телах, в том числе — в кристаллах и пр. В насго-яи ей книге сделана попытка дать всем этим вопросам достаточно полное освещение в сочетании с другими аспектами распространения ультразвуковых волн. В книге приводятся также э сперимеп-тальные данные по скорости и поглощению ультразвука в л<идко-стях и газах, а также по скорости звука в изотропных твердых телах и кристаллах. Наряду с классическим материалом в ней использованы данные из оригинальных источников, на которые сделаны соответствующие ссылки.  [c.5]

В последующих главах мы будем рассматривать распространение ультразвуковых волн в безграничной среде, которая обладает только объемной упругостью, но не имеет упругости формы и вязкости, т. е. является идеально текучей. В соответствии со сказанным в 6 гл. I, в такой среде, которой мы приписываем свойства идеальной сжимаемой жидкости, возможны лишь упругие деформации всестороннего сжатия, и, следовательно, в ней могут распространяться упругие волны только одного типа — волны сжатия (разрежения). Это существенно упрощает анализ возмущений и в то же время позволяет получить основные акустические соотношения для наиболее общего типа волн, которые могут существовать как в жидкостях (и газах), так и в твердых телах. В последних, как мы видели, возможны и другие упругие деформации, которым соотвег-ствуют иные типы волн, рассматриваемые ниже. Однако те соотношения, которые мы получим для волн сжатия в идеальной жидкости, будут справедливы и для других волн, поэтому в основных чертах они имеют общее значение для разных типов волн в различных средах. Реальные жидкости обладают некоторой упругостью формы. Такая упругость заметно проявляется лишь при очень больших скоростях деформации, значительно превышающих скорости, соответствующие ультразвуковым колебаниям самой высокой частоты, при которой они могут распространяться в жидкости без существенного затухания. Это дает основание считать скорости деформаций в ультразвуковой волне достаточно медленными, чтобы сдвиговой упругостью реальных жидкостей можно было полностью пренебречь.  [c.29]


Как уже отмечалось, в ультразвуковой волне типа (И 1.7) происходит перерюс энергии от источника в направлении распространения волны. В качестве энергетической характеристики излучения вводится понятие плотности потока энергии или интенсивности ультразвука. Под интенсивностью ультразвука понимается количество энергии, переносимое в единицу времени через единичную площадку, перпендикулярную направлению распространения ультразвуковой волны. Поскольку звуковая энергия распространяется со скоростью звука q, то интенсивность определяется умножением плотности энергии w на q, что дает  [c.51]

В различных отраслях промышленности успешно применяется ультразвуковой метод очистки, основанный на преобразовании высокочастотного электрического тока в высокочастотные колебания жидкости. Высокая скорость колебаний ускоряет химические и физические процессы, происходящие в растворителях, и тем самым значительно ускоряет процесс обезжиривания и очистки деталей. Для этих целей могут быть применены генераторы тина УЗГ с магнитофрикционными преобразователями типа ПМС в сочетании с ультразвуковыми волнами типа УЗВ.  [c.310]

В работе [27] показано, что при любом соотношении параметров твердой и жидкой сред уравнение (1.46) имеет один вещественный корень, соответствующий поверхностной волне, бегущей вдоль границы с фазовой скоростью, меньшей скорости Сж волны в жидкости и скоростей i,t продольных и поперечных волн в твердом теле. Указанная волна состоит из неоднородной волны в жидкости и двух неоднородных волн в твердом теле. Все три волны экспотенциально затухают при удалении (в обе стороны) от границы 2 = 0. Как показано в монографии [28], эта поверхностная волна имеет совершенно другую структуру и скорость, чем рэлеевская волна (даже при малости плотности жидкости по сравнению с плотностью твердого тела). Энергия волны и движение частиц локализованы в основном в жидкости, а не в твердом теле. Поэтому в ультразвуковой практике подобный тип волны не используется, и мы ее не будем здесь рассматривать.  [c.57]

Основной принцип работы волноводных ультразвуковых линнй задержки ничем не отличается от принципа работы ультразвуковых линий задержки других типов и состоит в том, что электрический сигнал с помощью электромеханического преобразователя преобразуется в механические колебания, которые затем распространяются в виде упругих волн по определенному направлении через задерживающую среду. Различие заключается в условиях распространения упругих волн в линии задержки. В обычных линиях задержки с пьезоэлектрическими преобразователями, например в линиях с прямым ходом луча или призматического типа, описанных в гл. 7, упругие волны распространяются как плоские волны в безграничной среде, не взаимодействуя с ограничивающими поверхностями. В волноводных же линиях задержки отношение поперечных размеров проволоки или прямоугольной ленты к длине волны выбирается таким, чтобы упругие волны, взаимодействуя с граничными поверхностями, распространялись как в волноводе. В упругом волноводе может существовать множество нормальных волн, причем для большинства из них фазовая скорость является функцией частоты. Линии задержки, использующие такие нормальные волны, носят название дисперсионных.  [c.489]

Велосиметрический метод основан на изменении под влиянием дефекта скорости и пути распространения волн в ОК типа пластины. Он относится к группе методов прохождения. В ОК возбуждают непрерывные или импульсные низкочастотные ультразвуковые колебания (20...70 кГц). Дефекты регистрируют по изменению сдвига фазы принятого сигнала или изменению времени  [c.228]

Немногочисленные пока данные о соотношениях = f[vp) для грунтов различных типов, закрепленных цементом, свидетельствуют о том, что вид соотношения зависит как от типа грунта, так и от его влажности. Об этом говорят данные, приведенные на рис. 104. В соответствии с этими данными вид грунта, укрепляемого цементом, оказывает существенное влияние на скорость распространения ультразвуковых волн в цементогрунте скорость уменьшается с увеличением в нем количества глинистых и пылеватых частиц. Результирующая прочность цементогрунта тем выше, чем более он песчанист. Поэтому для каждого вида грунта необходимо устанавливать свое корреляционное соотношение = f vp).  [c.247]

Для определения скорости звука в жидкостях широко применяются различные оптические методы. Чаще всего для этой цели используется явление диффракции света на ультразвуковой решётке. В жидкости, в которой распространяется акустическая волна, возникают чередующиеся уплотнения и разрежения. Благодаря зависимости коэффициента преломления жидкости от её плотности периодическим изменениям плотности жидкости будет соответствовать периодическое изменение коэффициента преломления. Сказанное справедливо как для стоячей, так и для проходящей волны. Таким образом, если получить акустическую волну в жидкости, налитой в прозрачную кювету с плоскопараллельными стенками, то по отношению к световому лучу подобное устройство будет являться квазидиффракциоиной решёткой. Роль постоянной этой решётки играет длина волны ультразвука X. Ультразвуковая решётка является объёмной решёткой слоистого типа. То обстоятельство, что в случае проходящей ультразвуковой волны диффракционная решётка движется, не имеет значения, поскольку скорость звука ничтожно мала по сравнению со скоростью света. Теория диффракции света на ультразвуковой решётке подробно развита в работах Рытова [300, 301,311].  [c.73]

Эксперименты различаются по типу возбуждаемого импульса напряжений. При этом могут быть использованы монотонные импульсы сжатия в форме полуволны синусоиды о пологим участком нарастания напряжения, образуюш иеся в результате соударения с частицей, или импульсы с резким нарастанием напряжения, вызываемые воздействием взрывчатого вещества и ударных плит. Разложение Фурье для этих импульсов содержит значительную по величине составляющую с нулевой частотой. Ультразвуковые или синусоидальные импульсы характеризуются узким спектром, концентрирующимся в окрестности некоторой определенной частоты или длины волны. Волны этого типа идеальны для непосредственного определения соотношения дисперсии путем измерения групповых скоростей импульсов, в то время как при монотонном илшульсе дисперсия определяется косвенным образом по изменению формы импульса при его прохождении через материал.  [c.303]

Основные свойства упругих колебаний высокой частоты или ультразвуковых колебаний, как известно, описываются теми же закономерностями, что и свойства колебаний звукового диапазона. В частности, это касается условий распространения упругих волн в сплошной изотропной среде, обладающей упругими свойствами. Однако ультразвуковые колебания могут быть примен1 ны для решения ряда новых задач. Примером может служить исследование изменения различных характеристик жидких и твердых тел в зависимости от скорости распространения ультразвука и коэффициента затухания с помощью импульсно-фазового компенсационного метода приборами типа УЗИХ, разработанных Н. И. Бражниковым [9], [10]. Погрешность измерений скорости ультразвука такими приборами составляет 0,007 и 0,003% на частотах соответственно 1 и  [c.291]


Предлагаемая книга посвящена распространению ультразвуковьЕх волн в жидкостях, газах и твердых телах, рассматриваемых как сплошные среды с разными характеристиками упругости. В ней систематизированы вопросы, имеющие непосредственное отнощение к специфике ультразвука возможности генерирования направленных пучков плоских волн, высокой интенсивности ультразвукового излучения и т. д. В связи с этим основное внимание в книге уделено различным аспектам распространения плоских волн их общим характеристикам, затуханию, рассеянию на неоднородностях, отражению, преломлению, прохождению через слои, интерференции, дифракции, анализу нелинейных явлений, пондеромоторных сил, краевых и других эффектов в ограниченных пучках. Рассматриваются также сферические волны, которые формируются при пульсационных колебаниях сферических тел, в дальней зоне излучателей малых размеров, в ультразвуковых фокусирующих системах. Большинство из этих вопросов обсуждается применительно к продольным волнам для сред, обладающих объемной упругостью, а для других типов волн, в частности для сдвиговых волн в жидкостях и твердых телах, дополнительно рассматриваются те вопросы, которые составляют их специфику. К ним относятся граничные и нелинейные эффекты в твердых телах, трансформация волн, их дисперсия, поверхностные волны, соотношения между скоростями звука и модулями упругости в кристаллах, в том числе в пьезоэлектриках.  [c.2]

Третий вид акустического течения, имеющий большое значение в задачах интенсификации процессов массо- и теплообмена, это акустические потоки в тонком акустическом пограничном слое, толщина которого порядка длины вязкой волны (2т]/сор) /2. Это течение проявляется в большей степени в звуковом диапазоне, так как на ультразвуковых частотах очень мало. Масштабы вихрей в акустическом пограничном слое меньше X, так что такое течение имеет малые масштабы. Теория таких мелкомасштабных течений в пограничном слое впервые была разработана Шлихтингом [22, 23] их часто называют шлихтинговскими. Отметим, что скорость всех этих трех типов акустических течений даже при сравнительно большой интенсивности звука обычно мала по сравнению с колебательной скоростью в звуковой волне. Однако в небольшом числе экспериментов по возбуждению эккартовского течения очень интенсивным звуком эти скорости были сравнимы по величине. Подробные сведения о всех трех видах акустических течений имеются в обстоятельных обзорах [24, 25].  [c.136]

Излучатели второго типа основываются на различных физич. эффектах электромеханич. преобразования. Как правило, они линейны, т. е. воспроизводят по форме возбуждающий электрич. сигнал. Большинство излучателей УЗ предназначено для работы на к.-л. одной частоте, поэтому в устройстве излучающих преобразователей обычно используются резонансные колебания механич. системы, что позволяет существенно повысить их эффективность. Преобразователи без излучающей механич. системы, напр, основанные на электрич. разряде в жидкости, применяются редко. В низкочастотном УЗ-вом диапазоне применяются электродинамические излучатели и излучающие магни-тострикционные преобразователи и пьезоэлектрические преобразователи. Элект-родинамич. излучателп используются на самых низких ультразвуковых частотах, а также в диапазоне слышимых частот. Наиболее широкое распространение в низкочастотном диапазоне УЗ получили излучатели магнитострикционного и пьезоэлектрич. типов. Основу магнитострикционных преобразователей составляет сердечник из магнитострикционного материала (никеля, специальных сплавов или ферритов) в форме стержня или кольца. Пьезоэлектрич. излучатели для этого диапазона частот имеют обычно составную стержневую конструкцию в виде пластины из пьезокерамики или пьезоэлектрич. кристалла, зажатой между двумя металлич. блоками. В магнитострикционных и пьезоэлектрич. преобразователях, рассчитанных на звуковые частоты, используются изгибные колебания пластин и стержней или радиальные колебания колец. В среднечастотном диапазоне УЗ применяются почти исключительно пьезоэлектрич. излучатели в виде пластин из пьезокерамики или кристаллов пьезоэлектриков (кварца, дигидрофосфата калия, ниобата лития и др.), совершающих продольные или сдвиговые резонансные колебания по толщине. Кпд пьезоэлектрич. и магнитострикционных преобразователей при излучении в жидкость и твёрдое тело в низкочастотном и среднечастотном диапазонах составляет 50—90%. Интенсивность излучения может достигать нескольких Вт/см у серийных пьезоэлектрич. излучателей и нескольких десятков Вт/см у магнитострикционных излучателей она ограничивается прочностью и нелинейными свойствами материала излучателей. Для увеличения интенсивности и амплитуды колебаний используют УЗ-вые концентраторы. В диапазоне средних УЗ-вых частот концентратор представляет собой фокусирующую систему, чаще всего в виде пьезоэлектрич. преобразователя вогнутой формы, излучающего сходящуюся сферич. или цилиндрич. волну. В фокусе подобных концентраторов достигается интенсивность 10 —10 Вт/см на частотах порядка МГц. В низкочастотном диапазоне используются концентраторы — трансформаторы колебательной скорости в виде резонансных стержней переменного сечения, позволяющие получать амплитуды смещения до 50—80 мкм.  [c.14]


Смотреть страницы где упоминается термин Типы и скорость ультразвуковых волн : [c.100]    [c.250]    [c.11]    [c.238]    [c.48]    [c.227]    [c.294]    [c.41]    [c.482]    [c.228]    [c.639]   
Смотреть главы в:

Ультразвуковая дефектоскопия  -> Типы и скорость ультразвуковых волн



ПОИСК



Волна скорость

Волны-Типы

Луч ультразвуковой

Ультразвуковые волны



© 2025 Mash-xxl.info Реклама на сайте