Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания ультразвуковые скорость распространения

По фотографиям ультразвуковых волн в прозрачных твёрдых телах, а также из наблюдений дифракции света на ультразвуковой решётке можно, как об этом мы говорили раньше, определить длину волны ультразвука и, зная частоту колебаний, найти скорость распространения ультразвуковых воли. Поскольку плотность образца известна, можно далее весьма точно вычислить модуль Юнга этого образца.  [c.385]


В ультразвуковой дефектоскопии весьма часто приходится встречаться с отражением от свободной поверхности волны, распространяющейся внутри твердого тела. Амплитуду возникающих продольных и поперечных волн определяют из условий равенства нулю на границе нормальных и тангенциальных напряжений. Углы и коэффициенты отражения для стали показаны в работе [65, стр. 172]. Максимумы коэффициентов отражения по амплитуде смещения на этих графиках для трансформированных волн больше единицы. Однако с учетом того, что при трансформации происходит изменение плоскости колебаний и скорости распространения волн, законы сохранения импульса и энергии при этом не нарушаются.  [c.33]

Ультразвуки впервые были практически применены в эхолоте для измерения глубины моря. В дне судна помещаются ультразвуковой излучатель, посылающий короткие цуги колебаний длительностью около 0,001 сек, и приемник ультразвуков (рис. 476). Отражаясь от дна моря, ультразвуки через некоторое время достигают приемника. По промежутку времени, прошедшему между отправлением сигнала и его возвращением, зная скорость распространения ультразвука, определяют расстояние до дна моря.  [c.746]

Надежность и долговечность конструкций,- работающих на динамические воздействия, как известно, обусловливаются не только характером и величиной нагрузки, но и динамическими характеристиками конструкции и материала, из которого она изготовлена. Поэтому целью экспериментальных исследований в нащем случае наряду с определением деформаций, возникающих в элементах конструкции, является также изучение физико-механических и динамических характеристик материала и конструкции в целом. Динамические характеристики определялись по осциллограммам собственных колебаний конструкции. Об однородности структуры стеклопластика и изменении ее во времени можно судить по скорости распространения ультразвуковых колебаний. Деформации материала в различных точках конструкции определялись по осциллограммам вынужденных колебаний.  [c.217]

Проведенные исследования в этой области дали положительные результаты для определения упругих постоянных латуни, сплавов железа и алюминия, монокристаллов германия и кремния, никеля, твердых растворов меди и поликристаллического сплава магний— кадмий. Ультразвуковые методы позволяют определять модули Юнга и сдвига на одном и том же образце, что открывает большие возможности для исследования упругих постоянных экспериментальных сплавов и установления для них взаимосвязей модулей с другими характеристиками межатомного взаимодействия. Так же как и при контроле жидкостей, скорость распространения ультразвука в жидких металлах в основном определяется величиной коэффициента адиабатической сжимаемости, а последний -относится к числу физических величин, которые в значительной степени зависят от строения жидких металлов. Поэтому, зная скорость, распространения ультразвуковых колебаний в данном металле, можно рассчитать величину модуля Юнга, модуля Пуассона и модуля сдвига. Для точного измерения интервала между ультразвуковыми импульсами достаточно иметь длину образца, равную 25 мм.  [c.223]


Возбуждение излучателя осуществляется пакетами электрических колебаний, поступающих с генератора 6, который управляется импульсами тактового генератора 9. Ультразвуковые колебания, излучаемые пьезокерамическими дисками, распространяются в направлении к поверхности контролируемого объекта и после отражения от нее воздействуют на приемник 3, который преобразует энергию ультразвуковых колебаний в электрические сигналы. Сигналы, поступающие с выхода приемника 3 усиливаются предусилителем 7, детектируются и после обработки в селекторе поступают на вход триггера 10. При этом длительность выходных импульсов триггера пропорциональна измеряемому расстоянию, а амплитуда пропорциональна скорости распространения звука. Преобразование импульсов, модулированных по длительности и амплитуде, в напряжение осуществляется посредством фильтра нижних частот 12, выход которого подключается к индикатору 14 и пороговому устройству 11, формирующему сигналы для управления механизмами. Питание функциональных узлов дальномера осуществляется от узла сетевого питания 13.  [c.235]

V — скорость распространения ультразвуковых колебаний в изделии.  [c.602]

Импульсный ультразвуковой эхо-дефектоскоп типа УДМ-1М предназначен для обнаружения и определения координат дефектов, являющихся нарушениями сплошности (раковины, расслоения, пористость, треш,ины и т. д.), которые расположены на глубине от 1 до 2500 мм под поверхностью в крупных металлических заготовках, полуфабрикатах и изделиях для обнаружения различных дефектов в сварных соединениях для контроля макроструктуры стали, а также для измерения толщины изделия при одностороннем доступе к нему. Прибор позволяет определять дефекты в неметаллических изделиях (оргстекле, фарфоре, некоторых видах пластмасс), а также определять скорость распространения ультразвуковых колебаний в различных материалах методом сравнения.  [c.250]

Адиабатический модуль объемной упругости можно определить путем измерения скорости распространения ультразвука. Применяются три метода. При первом из них используют ультразвуковые интерферометры. Испытательный прибор сконструирован таким образом, что источник отраженных волн может перемещаться. Отраженные волны могут совпадать и не совпадать по фазе с падающими волнами, следствием чего бу- дут максимумы и минимумы на кривых, вычерчиваемых самописцем микроамперметра. Таким путем можно непосредственно определить длину волны, а по частоте генератора колебаний, которая известна, рассчитать скорость распространения ультразвука. Второй, импульсный, метод заключается в пропускании коротких импульсов ультразвуковых волн от кварцевого кристалла через жидкость к отражателю и обратно к первому  [c.115]

Важными характеристиками ультразвуковых колебаний являются частота, амплитуда, скорость распространения и интенсивность [ 294, 295]. Скорость распространения волны связана с длиной волны и частотой соотношением  [c.84]

Сущность метода. Динамический метод определения модуля Юнга материалов основан на зависимости скорости распространения ультразвуковых колебаний (/> 20 кГц) в материалах от их упругости.  [c.92]

Измерения продольной скорости распространения ультразвуковых колебаний Vl при сквозном прозвучивании образца дают достаточно хорошую корреляцию с пределом прочности при ра-  [c.471]

Для ультразвуковой дефектоскопии большое значение имеет удельное волновое сопротивление среды, которое выражается про изведением плотности среды р на скорость распространения в ней упругих колебаний с z=p .  [c.116]

Скорости распространения ультразвуковых колебаний в однородных телах зависят от их свойств и размеров, а также от типа волн.  [c.63]

Так как волновое сопротивление изгибного волновода зависит от скорости распространения волны, то практические возможности выбора величины этого сопротивления больше, чем для волноводов продольных колебаний, у которых эта величина определяется только их материалом и площадью поперечного сечения. Выбором величины волнового сопротивления и длины изгибного волновода можно легко осуществить необходимую (из условий отбора мощности от преобразователя) трансформацию сопротивления нагрузки, связанной с концом волновода, в его начало. Существенной особенностью применения изгибных волноводов в сочетании с волноводами продольных колебаний является возможность построения разнообразных рациональных схем ультразвукового оборудования. При применении продольных колебаний обычное расположение основных узлов — это прямая линия преобразователь — волновод — излучатель — объект обработки. В ряде случаев такое расположение оказывается неудобным. Например, нельзя магнитострикционный преобразователь, помещенный в охлаждаемый водой бак, располагать над кристаллизатором с расплавленным металлом (если необходима ультразвуковая обработка расплава сверху, через его зеркало). Горизонтально расположенный изгибный волновод, возбуждаемый на одном своем конце продольными колебаниями, создаваемыми преобразователем, дает возможность расположить этот преобразователь рядом с кристаллизатором. Второй конец волновода ока-  [c.248]


Распространение акустической ультразвуковой волны в материале происходит с определенной постоянной скоростью С, определяемой свойствами среды (следует отличать скорость ультразвуковой волны С от скорости колебания упругих частиц V, которая зависит от фазы колебаний). Распространение волны сопровождается образованием в материале зон, в которых частицы находятся в одинаковом колебательном состоянии (фазе). Минимальное расстояние между такими зонами называют длиной волны X. Величина X связана со скоростью распространения С и частотой колебаний / выражением  [c.140]

Фазовая скорость определяет скорость распространения волнового фронта. Она позволяет вычислить частоту ультразвуковых (УЗ) колебаний и необходимый угол падения. Найдем выражение фазовой скорости (рис. 2.5)  [c.27]

Несколько более сложны уровнемеры, использующие изменение скорости распространения или затухания ультразвуковых колебаний, поглощения жестких излучений или изменение оптической плотности. Основным достоинством таких систем является полное отсутствие контакта с жидкостью, однако температура и давление в жидкости, а также наличие газовых включений существенно сказывается на перечисленных явлениях, что приводит к большим погрешностям или к значительному усложнению схемы уровнемера ради компенсации этих погрешностей.  [c.234]

Ультразвуковые расходомеры. Они основаны на взаимосвязи между скоростью измеряемого потока и скоростью распространения звуковых колебаний между двумя точками трубопровода. Первичный преобразователь такого расходомера представляет собой отрезок трубопровода с установленными на его стенках двумя пьезоэлектрическими датчиками, играющими роль излучателя и приемника высокочастотных колебаний. Измеряемым параметром может быть сдвиг фаз или разность частот колебаний, направляемых по потоку или против него. Как указывается в работе [13], основные источники погрешностей ультразвуковых расходомеров следующие а) изменение скорости распространения колебаний из-за изменения плотности потока б) отражение ультразвукового луча в) зависимость показаний от числа Не (вследствие того, что фактически измеряется не средняя по сечению трубы скорость, а средняя скорость вдоль ультразвукового луча). Электронно-акустическая аппаратура 372  [c.372]

Эти фотографии дают наглядную физическую картину распространения волн мы видим на них наиболее типичные явления, характерные для волнового движения,— дифракцию, рассеяние, интерференцию, основные геометрические законы при падении и отражении волн от препятствий. Кроме того, зная частоту колебаний кварцевой пластинки, служащей излучателем ультразвуковых волн, и измеряя на фотографии расстояния между соседними сгущениями или разрежениями, т. е. длину волны ультразвука, легко определить скорость распространения ультразвука в жидкости. На рис. 179 приведена фотография ультразвуковых волн, излучаемых в вазелиновое масло кварцевой пластинкой толщиной 2 мм на своей  [c.283]

Если из пьезокристалла, например кварца, вырезать пластинку среза X и придать ей форму вогнутого зеркала, то при колебаниях такая пластинка будет обладать фокусирующими свойствами. Ультразвуковые волны будут концентрироваться в фокусе, расположенном на акустической оси. Такими пластинками пользуются для получения большой акустической мощности, сосредоточенной в фокусе. На рис. 184 приведены фотографии ультразвукового пучка в воде от вогнутого зеркала из кварцевой пластинки, полученные методом темного поля на этих фотографиях ясно виден эффект фокусировки. Фокусировка получается размытой одна из причин этого, кроме упоминавшихся выше, состоит в том, что вогнутая кварцевая пластинка не совершает строго радиальных колебаний. Скорость распространения продольных волн в кварце различна по различным направлениям относительно осей кристалла. По этой причине резонансные свойства изогнутой пластинки не так резко выражены, как у пластинки чистого среза X. Применяя излучатель вогнутой формы из керамики титаната бария, можно обойти эту трудность, если произвести предварительную поляризацию так, чтобы участки пластинки колебались строго радиально, т. е. в направлении радиуса кривизны пластинки.  [c.309]

Для целей дефектоскопии волны Лэмба обычно возбуждаются при помощи продольных ультразвуковых колебаний, падающих на поверхность образца под углом, отличным от прямого, из среды с малой скоростью распространения (оргстекло, жидкость).  [c.147]

Известно, что нормальные волны обладают дисперсией. Это одна из основных особенностей нормальных волн по сравнению с продольными и поперечными УЗК. Фазовые скорости, представленные на рис. 2, связаны с распространением непрерывных колебаний синусоидальной формы, т. е. с монохроматическими ультразвуковыми волнами. При контроле эхо-методом приходится и.меть дело с импульсами синусоидальных колебаний. В промышленных дефектоскопах импульс, формируемый генератором, представляет собой высокочастотный импульс с крутым передним фронтом и спадающей по экспоненциальному закону амплитудой. Этот зондирующий сигнал содержит группу спектральных составляющих. Ширина полосы спектра при данной частоте заполнения зависит от длительности и формы импульса чем короче импульс, тем она больше. Скорость распространения волн этой группы, т. е. импульса, называется групповой скоростью, определяющей скорость переноса энергии.  [c.158]

В зарубежных моделях резонансных приборов с автоматической частотной модуляцией отсчет толщин производится по шкалам, нанесенным на экран электронно-лучевой трубки. Это вынуждает применять трубки с большим диаметром экрана, что существенно увеличивает вес и габаритные размеры аппаратуры. Крупным недостатком рассматриваемого способа отсчета является также неудобство контроля изделий из материалов с различными скоростями распространения упругих колебаний. Практически при переходе от одного материала к другому приходится менять установленную перед экраном шкалу. Поэтому к прибору прилагается несколько шкал, градуированных для материалов с определенными скоростями распространения ультразвуковых колебаний.  [c.101]


Память и АЦП в интроскопах требуются скоростные. Объясняется это темпом поступления информации, который определяется скоростью распространения ультразвуковых колебаний в контролируемом изделии и требуемым осевым разрешением. Так, если необходима разрешающая способность по глубине 1 мм, при скорости звука 6000 м/с, то в эхоимпульсном интроскопе цикл АЦП — память должен быть не более 4 мкс, что реально с применением таких микросхем, как КИ07ПА1 и К565РУ5. Совокупность блоков АЦП, память, ЦАП и БУ называют иногда цифровым преобразователем ультразвуковых изображений.  [c.269]

Прибор УС-12ИМ предназначен для измерения скорости распространения и коэффициента затухания продольных ультразвуковых волн в изделиях с плоскопараллельными гранями. Прибор позволяет измерять отношение амплитуд ультразвуковых импульсов, проводить амплитудный анализ упругих колебаний и, таким образом, оценивать физико-механические свойства материалов.  [c.281]

Основные свойства упругих колебаний высокой частоты или ультразвуковых колебаний, как известно, описываются теми же закономерностями, что и свойства колебаний звукового диапазона. В частности, это касается условий распространения упругих волн в сплошной изотропной среде, обладающей упругими свойствами. Однако ультразвуковые колебания могут быть примен1 ны для решения ряда новых задач. Примером может служить исследование изменения различных характеристик жидких и твердых тел в зависимости от скорости распространения ультразвука и коэффициента затухания с помощью импульсно-фазового компенсационного метода приборами типа УЗИХ, разработанных Н. И. Бражниковым [9], [10]. Погрешность измерений скорости ультразвука такими приборами составляет 0,007 и 0,003% на частотах соответственно 1 и  [c.291]

Если в данной среде изменятся упругие свойства, то соответственно изменится и скорость прохождения ультразвуковых колебаний, что, в свою очередь, вызовет изменение положения и формы импульса на экране индикатора — электронно-лучевой трубки. При прозвучивании таким методом сосуда с клеем в момент незначительного испарения растворителя произойдет изменение упругих свойств растворенной массы и на экране индикатора произойдет смещение импульса. Смещение импульса, являющегося следствием изменения напряжения на управляющих электродах индикатора, может быть использовано для управления потоком растворителя, поступающего в сосуд с клеем. К достоинствам метода следует отнести его высокую точность и возможность измерения концентрации на движущемся потоке жидкости. Чувствительность импульсных приборов для измерения скорости распространения звука определяется отно-пшнием  [c.222]

Упругие колебания с частотой выше воспринимаемых человеческим ухом звуковых колебаний (свыше 20 кГц) называют ультразвуковыми колебаниями. В ультразвуковой дефектоскопии используют колебаиия с частотой 0,5—25 МГц. Скорость распространения волны определяется физическими свойствами среды. В зависимости от направления колебаний частиц среды и направления распространения волны различают продольные и поперечные волны. В продольной волне колебания частиц совпадают с направлением распространения волны, а в поперечной волне они перпендикулярны распространению волны. Поперечные волны могут  [c.502]

Велосимметричный метод основан на разнице скорости распространения акустических волн в соединении с дефектами или без них, а резонансный — на изменении резонансной частоты ультразвуковых колебаний.  [c.550]

В металлах возбуждаются все типы волн, в газах и жидкостях— только продольные волны. Скорость распространения ультразвуковых волн зависит от тина волны, илотности и упругих свойств среды. Для ультразвуковых колебаний характерны те же явления прелом--Ления, отражения, дифракдии, интсрферскцин, реверберации, что и для любых волновых движений [7, 10, 21]. В твердых телах скорость распространения упругих волн зависит от типа волны и, кроме того, от размеров тела, в котором она распространяется. Скорость распространения сдвиговых волн определяется модулем сдви-та и плотностью.  [c.116]

Если ультразвуковой луч падает на границу раздела сред под углом, отличным от прямого, то наряду с отражением наблюдается преломление, причем отношение синусов углов падения, отражения и преломления равно отношению скоростей распространения колебаний соответствующего вида в первой и второй средах. Если pi i< <Р2С2, то при переходе продольных упругих волн из одной твердой среды в другую кроме двух отраженных лучей будут наблюдаться и два преломленных (рис. 4.10). Углы падения, отражения и преломления связаны следующим соотношением  [c.119]

Важной характеристикой чувствительности ультразвукового контроля является размер мертвой зоны. Наличие мертвой зоны — основной недостаток эхо-импульсного метода, который ограничивает его применение и снижает эффективность контроля. Мертвая зона представляет собой контролируемый поверхностный слой, в котором эхо-сигнал от дефекта (контрольного отражателя) не отделяется от зондирующего. Под разрешающей способностью метода понимают способность раздельно принимать и воспроизводить эхо-сигналы от двух и более отражателей, расположенных вблизи друг от друга в направлении распространения ультразвукового пучка. Малая разрешающая способность не позволяет наблюдать раздельно дефекты, расположенные близко друг к другу или вблизи поверхностей изделия, что и приводит к появлению мертвых зон (рис. 4.14). Размер мертвой зоны X можно определить из выражения х= [спрод(Ти---fXn]/2, где Сирод — скорость распространения продольных волн Ти — длительность зондирующего импульса (длительность вынужденных колебаний пьезоэлемента) Тп — длительность переходного процесса (длительность свободных колебаний пьезоэлемента).  [c.122]

К неразрушающим методам контроля относят визуальный осмотр, простукивание, тепловой, оптический, электрический, радиоволновый, радиационный, контроль проникающими веществами, ультразвуковой контроль. Наибольшее распространение получил последний метод, основанный на измерении длины волны, амплитуды, частоты или скорости распространения ультразвуковых колебаний в клеевом шве. По способу выявления дефектов среди методов ультразвукового контроля выделяют теневой, эхо-импульсный, импедансный, резонансный, велосимметрический, метод акустической эмиссии. Для реализации этих методов разработана соответствующая аппаратура (см. раздел 8). При контроле клееных сотовых конструкций с сотами из алюминиевого сплава и обшивками из ПКМ целесообразно применять несколько методов [100]. Акустический метод, например, с использованием импедансных дефектоскопов ИД-91М и АД-42И с частотной и амплитудной регистрацией колебаний соответственно эффективен для обнаружения отслоений сотового заполнителя от обшивки, а радиографический — для выявления повреждений сотового заполнителя и обшивки, а также для фиксирования мест заливки в соты пасты.  [c.537]


Для сред с переменными параметрами могут изменяться величины Р и с. Например, при обработке ультразвуком расплавов в процессе их кристаллизации, вследствие изменения фазового состояния расплава и его температуры, изменяются величины поглощения и скорости распространения. Таким образом, в процессе обработки непрерывно изменяются Zbx и его составляющие. В качестве другого примера приведем технологическую ванну, в которой ведется процесс ультразвукового эмульгирования. По мере развития процесса и перехода большей части объемов компонентов в эмульсию, состав, а следовательно, и физические параметры среды изменяются. Следует, однако, учитывать, что изменение физических параметров среды в основном влияет на активную составляющую входного сопротивления, а следовательно, расстройка системы происходит в меньшей мере, чем нарушение величины оптимального значения нагрузочного сопротивления. Практически нарушение этой величины для большинства известных нам технологических жидких сред не очень существенно. Больше сказывается изменение габаритов объема, в котором помещена среда. При этом наибольшее влияние на режим оказывает изменение реактивной составляющей, обусловливающей расстройку всей системы. Приведем два примера. 11ри обработке ультразвуком металла в процессе его кристаллизации, в дуговых вакуумных печах с расходуемым электродом слиток непрерывно растет, т. е. изменяется его высота, а следовательно, и величина реактивной составляющей входного сопротивления. Аналогичное положение может иметь место при наложении ультразвуковых колебаний на заготовку, подвергающуюся пластической деформации. С изменением конфигурации и размеров заготовки изменяется реактивная составляющая сопротивления нагрузки, т. е. нарушаются резонансные условия. Таким образом, при обработке ультразвуковыми колебаниями объемов с переменными габаритами возникает задача эффективного ввода энергии колебаний в условиях переменного значения входного сопротивления нагрузки.  [c.211]

В импульсном режиме энергия колебаний генерируется в виде импульсов, заполненных ультразвуковой несзпцей частотой. Продолжительность t импульса и период Ti повторения выбираются такими, чтобы время прохождения импульсом пути, составленного волноводом длиной и нагрузкой длиной Zh, было больше t, а каждый отраженный от конца нагрузки импульс возвращался к преобразователю после излучения последующего импульса. При этих условиях, пренебрегая отражениями порядка выше второго, можно принять, что в колебательной системе практически возникнут бегущие волны и входное сопротивление нагрузки на преобразователь останется постоянным, не зависящим от изменяющейся длины Zh. Для исключения возможного отражения на границе излучатель — нагрузка следует применить согласование между нагрузкой и волноводной системой. Необходимые характеристики импульсного режима могут быть определены следующим образом для максимального сужения спектра импульсного сигнала примем, что в импульсе должно содержаться не менее п периодов несущей частоты. Значение п определяется из условия, что наибольшая часть энергии содержится в основной частоте / спектра. Требование минимально допустимой полосы частот, в частности, связано с тем, что вследствие геометрической дисперсии скорости распространения упругих колебаний по волноводной системе импульс может существенно исказиться. Кроме того, согласование в широком диапазоне частот не может быть удовлетворительным. Отсюда  [c.220]

Физическую причину различия предельных значений и С/ легко понять, учитывая, что это различие связано с коэффициентом Пуассона, который определяет сокращение поперечных размеров стержня при его удлинении. В случае тонкого стержня изменение его поперечных размеров при продольных деформациях не встречает сопротивления со стороны внешней среды, что эквивалентно меньшей эффективной жесткости по сравнению с безграничным телом при 0. В свою очередь, наличие поперечных пульсаций при распространении продольных волн в тонком стержне означает зависимость его поперечных размеров, т. е. площади 5, от координаты д , что не учитывалось при выводе уравнения (Х.74). Учет этого обстоятельства, выполненный Рэлеем (11 для круглого стержня радиусом Н, приводит к убыванию скорости с увеличением частоты при / < А. Физическая причина этого явления состоит в том, что возбуждение радиальных колебаний при продольных деформациях стержня приводит к большей кинетической энергии колеблющихся частиц по сравнению с чисто продольными колебаниями, что эквивалентно большей колеблющейся массе, т. е. меньшей эффективной жесткости для продольных волн. Когда длина волны Л становится соизмеримой с диаметром стержня, поперечный эф4 ект вызывает резонансные радиальные колебания. В резонансной области наблюдается аномальная дисперсия скорость продольных волн падает до нуля, а затем при дальнейшем увеличении частоты быстро возвращается из бесконечности, устремляясь к новому, высокочастотному предельному значению с (оо) = с,, определяемому формулой (Х.76). Общая картина геометрической дисперсии качественно изображена на рис. 69, который хорошо согласуется с экспериментальными данными [12]. Вся область существенной дисперсии на этой картине располагается в небольшом диапазоне частот, соответствующем изменению длины волны Л на (30 40) 0 относительно радиуса стержня. Однако, как показывает опыт, при точных измерениях скорости распространения ультразвуковых волн в стержневидных образцах геометрическая дисперсия ощущается даже тогда, когда поперечные размеры стержня превышают длину ультразвуковой волны в десятки и сотни раз [78].  [c.235]

В том случае, когда направление распространения ультразвуковой волны совпадает с направлением колебания частиц, волна называется продольной, ли волной сжатия. Если колебания частиц перпендикулярны направлению распространения ультразвуковой волны, она называется поперечной. Скорость распространения продольных волн больше, чем поперечных, в два раза. При движении ультразвука в стали скорость распространения его продольной волны равна 5860 м1сек, а длина волны при частоте ультразвуковых колебаний 2,5 Мгц составляет 2,34 мм. Для обнаружения дефектов в контролируемом материале длина ультразвуковой волны должна быть меньше размера дефекта, который необходимо обнаружить.  [c.353]


Смотреть страницы где упоминается термин Колебания ультразвуковые скорость распространения : [c.295]    [c.496]    [c.472]    [c.65]    [c.125]    [c.135]    [c.137]    [c.22]    [c.306]    [c.395]    [c.279]    [c.228]    [c.91]   
Неразрушающие методы контроля сварных соединений (1976) -- [ c.142 ]



ПОИСК



Луч ультразвуковой

Распространение колебаний

Скорость распространения

Скорость распространения колебани

Ультразвуковые колебания



© 2025 Mash-xxl.info Реклама на сайте