Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общая форма закона движения

Общая форма закона движения.  [c.100]

J ОБЩАЯ ФОРМА ЗАКОНА ДВИЖЕНИЯ Ю1  [c.101]

ОБЩАЯ ФОРМА ЗАКОНА ДВИЖЕНИЯ ЮЗ  [c.103]

ОБЩАЯ ФОРМА ЗАКОНА ДВИЖЕНИЯ 105  [c.105]

ОБЩАЯ ФОРМА ЗАКОНА ДВИЖЕНИЯ Ю7  [c.107]

Поэтому истинные законы движений в отдаленных областях Вселенной нам остаются совершенно неизвестными, вследствие чего рассмотрение наиболее общих форм законов и математи-  [c.184]


В определителе выделяют геометрическую (Г) часть и алгоритмическую [А]. Геометрическая часть определителя содержит форму образующей и направляющих, а алгоритмическая часть задаёт закон движения и изменения фор.мы образующей в процессе движения. Общий определитель записывается в виде а (Г) [А].  [c.136]

Уравнение движения механизма в конечной форме (см. 5) дает лишь общее представление о динамических процессах, наблюдаемых при этом движении. Как было установлено, для нахождения закона движения механизма по заданным силам это уравнение может быть применено лишь в ограниченном числе случаев. При изучении движения механизма в периоды пуска и останова, а также при изучении периодически неравномерного движения механизма приходится вместо уравнения кинетической энергии в конечной форме пользоваться уравнением, выражающим эту теорему в дифференциальной форме  [c.65]

Наиболее общей является интегральная форма уравнений газовой динамики. Уравнения в этой форме допускают разрывные решения, представляющие течения самого общего вида. Законы сохранения массы, изменения количества движения и сохранения энергии в случае плоских и осесимметричных стационарных течений совершенного газа соответственно могут быть записаны в виде  [c.48]

Галилей первый (1638 г.) обнародовал закон инерциального движения тел. Этот закон Галилея Ньютон (1686 г.) сформулировал в более общей форме, приведенной нами в 3 и 36, и назвал первым законом механики.  [c.256]

А]. Геометрическая часть определителя содержит форму образующей и направляющих, а алгоритмическая часть задаёт закон движения и изменения формы образующей в процессе движения. Общий определитель записывается в виде а (Г) [А .  [c.156]

Все многообразие явлений природы есть не что иное, как проявление различных форм движения материи. Участие естественных наук в познании явлений природы заключается в том, что естественные науки изучают основные свойства материи и общие законы различных форм ее движения.  [c.5]

Как уже было указано, историческое развитие знаний о законах и формах механического движения и относительного покоя жидкости было тесно связано как с развитием производства, так и с общим развитием естествознания.  [c.12]

Для получения общей формы уравнения, выражающего закон сохранения энергии, выделим конечный объем W сжимаемой или несжимаемой жидкости, ограниченный поверхностью 5 и находящийся в движении. Рассматривая массу этого объема жидкости как неизолированную термодинамическую систему, можно применить к ней закон сохранения и превращения энергии, согласно которому изменение полной энергии системы равно сумме притока теплоты к системе и совершенной над ней работы внешних сил.  [c.113]


На рис. 1.3 представлен фиксированный в пространстве дифференциально малый единичный контрольный объем, через поверхности которого протекает жидкость, проходят потоки вещества, количества движения, энергии. Для этого контрольного объема законы сохранения можно записать в следующей общей форме  [c.9]

Установление истинного закона движения звеньев в машинном агрегате, определяемого как результат взаимодействия сил движущих и сил сопротивления, относится к группе наиболее сложных задач курса. В наиболее общем случае задачи подобного рода решаются или уравнением живых сил или уравнением в форме уравнения Лагранжа 2-го рода.  [c.174]

Более интересным является следующее обобщение допустим, что условия (12.1) меняются с течением времени, т. е. что функции Fi явно зависят не только от ж/., но и от L В этом случае необходимо оговорить, что при образовании выражений (12.4) время не должно варьироваться, что мы вправе сделать и что вполне естественно, так как наше виртуальное перемещение не имеет ничего общего с протеканием движения во времени. Эта оговорка не отражается на выводе уравнения (12.9). Однако зависимость Fi от t приводит к важным следствиям в отношении формы закона сохранения энергии.  [c.92]

Чтобы получить формулы, представляющие общее решение относительно каких угодно осей, очевидно, достаточно выполнить в уравнениях, полученных в п. 6 и относящихся к специальной системе осей, произвольную замену координат. Но так как на основании прямого исследования мы уже знаем геометрическую природу траектории и закон движения по ней, то будет более наглядно и более полезно для целей дальнейшего изложения заранее выбрать систему параметров (геометрических и кинематических), которые были бы удобны прежде всего для определения формы и размеров орбиты, затем положения, занимаемого ею в пространстве, отнесенном к любым осям, и, наконец, закона движения по орбите.  [c.205]

В 5 коротко повторяются теоремы Гамильтона в общей форме, а в б даются вытекающие отсюда законы взаимности для изменений в прямом и обратном движениях, возникающих в системе в результате небольших толчков. Здесь мы встречаемся с соотношениями взаимности в области звука и света, которые я доказал, но только для покоящихся систем, в своих более ранних работах.  [c.435]

Для динамического же расчета предполагаемого машинного агрегата очень важно заранее предопределить величины или исследовать поведение динамических нагрузок на его звенья, вызванные инерционными силами начального движения. Особенно это относится к агрегатам с большой неравномерностью движения. В общем случае для определения и учета влияния инерционных сил начального движения по сравнению с инерционными силами перманентного движения требуется знание закона движения звена приведения в той или другой форме.  [c.113]

Среди перечисленных видов энергии, которые могут сравниваться по упорядоченности, т. е. направленности движения, по концентрации, способности к превращению и скорости превращения в другие виды энергии, способности к накоплению, тепловая энергия занимает особое место. Все виды энергии могут превращаться непосредственно или косвенно в тепловую энергию. Закономерности превращения одних видов энергии в другие в наиболее общей форме устанавливаются основными законами термодинамики и физики. В термодинамике и статистической физике рассматриваются следующие характеристики энергии ве-  [c.37]

Соотношения (18) и (19) являются более общими формулировками закона трения движения, чем в виде (14) и (17), так как последние годятся только для схемы сил, соответствующей рис. 169, т. е. когда сила тяги направлена вдоль плоскости скольжения при нагрузке, действующей перпендикулярно к этой плоскости, в то время как соотношения в форме (18) и (19) являются справедливыми при любых условиях относительно расположения сил Р Q, как это имеет место для случая, изображенного на рис. 171. Здесь  [c.262]

Можно предположить, что на общей границе двух областей, например А и , устанавливается такая форма движения, которая одинаково удовлетворяет законам движения как в области А, так и в области Б. Такую общую границу мы будем называть естественной границей двух областей движения .  [c.12]


Поэтому в самой общей форме основной закон динамики вращательного движения записывается в виде уравнения (9.11), в котором, однако, момент инерции тела не считается неизменным.  [c.229]

Историю принципа живых сил можно начать с Галилея — его утверждение, что скорость, приобретаемая при движении тела вдоль наклонной плоскости, определяется только разностью высот исходного и начального положения, является первым и частным случаем этого принципа. В более общей форме это же положение высказано Торричелли (см. гл. V). Гюйгенс (см. там же, п. 19) заметил сохранение суммы живых сил при соударении идеально упругих шаров, — надо только оговорить, что для точной формулировки Гюйгенсу недоставало явного введения понятия массы. С той же оговоркой зависимость между суммой живых сил нескольких тяжелых материальных точек и работой силы тяжести при их перемещениях указана в Маятниковых часах Гюйгенса, и это — непосредственное продолжение линии Галилей — Торричелли. Все это — предыстория принципа живых сил, ибо в достаточно общем виде и вместе с названием и определением величины он появляется только в 1686 г. в работе Лейбница. Работа коротка (шесть страниц) и содержательна, название длинно Краткое доказательство удивительной ошибки Декарта и других относительно закона природы, согласно которому, как полагают, господь всегда сохраняет одно и то же количество движения, но который разрушает механику В ней есть положи-  [c.127]

Классическая статистическая механика есть предельный случай квантовой статистики при достаточно высоких температурах или малой плотности частиц, когда квантовыми эффектами можно пренебречь. В обоих случаях можно использовать понятие статистического ансамбля, чтобы описать макроскопическое состояние интересующей нас системы. Более того, мы увидим, что многие соотношения неравновесной статистической механики удается представить в форме, одинаково пригодной для классических и квантовых систем. Наиболее важными понятиями, общими для классической и квантовой статистики, являются скобки Пуассона и оператор Лиувилля. В предыдущем параграфе мы ввели их для классических систем. Теперь мы определим их для квантового случая. В дальнейшем формальная аналогия между классической и квантовой статистической механикой будет часто использоваться, поскольку, с одной стороны, она позволяет глубже понять многие проблемы, не зависящие от законов движения  [c.22]

Первое направление современной физики — изучение наиболее общих форм движения материи, лежащих в основе всех природных явлений установление законов этих движений и их всеобщей взаимосвязи между собой. Эти законы таковы, что им подчиняются все без исключения тела, где бы они ни находились, когда бы ни наблюдались и каким бы изменениям ни подвергались. Формы движения материи, изучаемые физикой, мы называем физическими процессами или физическими явлениями.  [c.12]

Аналитические методы позволяют описать статику и динамику теплотехнических объектов управления с достаточной для решения многих задач степенью точности. Уравнения статики, как правило, получают на стадии теплотехнических расчетов обьекта. Описание динамики вновь проектируемых объектов обычно отсутствует. Дифференциальные уравнения являются наиболее общей формой описания динамических свойств объекта. Составление дифференциальных уравнений базируется на использовании физических законов, определяющих процессы в системе. При описании теплотехнических объектов используют уравнения теплового и материального балансов, уравнения теплообмена, теплопроводности и другие конкретные формы выражения основных физических законов сохранения энергии, вещества, количества движения и т.д.  [c.551]

Таким образом, к концу XVHI в. процесс пр.евращения теплоты в работу был осуществлен, но без всяких теоретических расчетов и обоснований. Общую формулировку закона сохранения и превращения энергии дал великий русский ученый М. Б. Ломоносов. Однако Ломоносов не мог установить эквивалентность различных форм движения материи и дать количественную связь между ними, так как не имел необходимых для этого фактических данных.  [c.52]

После крушения теории теплорода теплота окончательно рассматривается как энергия движения составляющих тело материальных частиц (атомов, молекул). Но между теплотой и механической энергией вскоре обнаружились принципиальные отличия. Например, при торможении автомобиля его тормозные колодки нагреваются, но обратный процесс абсолютно невозможен — сколько бы мы ни нагревали колодки, автомобиль все равно останется на месте. Закон сохранения и превращения энергии, раскрывая количественную сторону превращений энергии, ничего не говорит о принцигшальных качественных отличиях между ее различными формами. Можно указать на другие принципиальные особенности тепловых явлений. Одним из самых очевидных наблюдений является то, что при различных видах работы часть энергии выделяется в виде теплоты. В природе существует тенденция к необратимому превращению различных видов энергии в теплоту, поскольку обратное превращение тепла в работу, за исключением изотермических процессов, невозможно. Другой, не менее очевидной особенностью тепловых явлений является то, что нагретые тела всегда стремятся прийти в равновесие с окружающей средой. Но и в этих процессах передачи теплоты существует односторонность, которую Р. Клаузиус сформулировал в качестве тепловой аксиомы Теплота не может сама собой переходить от тела холодного к телу горячему . Значение этого положения оказалось настолько важным, что его стали рассматривать как одну из формулировок второго начала термодинамики. Л. Больцман писал Наряду с общим принципом (законом сохранения и превра]цения энергии. — О. С.) механическая теория тепла установила второй, малоутешительным образом ограничивающий первый, так называемый второй закон механической теории тепла. Это положение формулируется следующим образом работа может без всяких ограничений превращаться в теплоту обратное превращение тепла в работу или совсем невозможно, или возможно лишь отчасти. Если и в этой формулировке второй принцип является неприятным дополнением к первому, то благодаря своим последствиям он становится гораздо фатальнее .  [c.79]


Для решения таких задач эффективным является применение интегралыных форм уравнений количества движения и момента количества движения. Методика их использования проиллюстрирована ка конкретных примерах в гл. 6, 7 н др. в данном параграфе приведены уравнения количества движения и момента количества движения в общей форме, удобной для практического применения. Закон количества движения сформулирован в гл. 3, где в общей форме получено соответствующее уравнение (3.8). Оно, однако, малоудобно для практического применения из-за необходимости вычислять объемный интеграл, требующий знания закона распределения скоростей в этом объеме. Более удобную форму уравнения количества движения можно получить, если перейти от описания потока по методу Лагранжа к описанию по методу Эйлера.  [c.110]

Ньютон (1642—1727). На основе более ранних исследований Леонардо да Винчи и Галилея Ньютоном были сформулированы основные уравнения движения. Были введены такие фундаментальные понятия, как импульс и действующая сила. Ньютонов закон движения решил задачу о движении изолированной частицы. Он мог также рассматриваться как общее решение задачи о движении, если только согласиться разбивать любую совокупность масс на изолированные частицы. Возникла, однако, трудность, связанная с тем, что не всегда были известны действующие силы. Эта трудность была частично преодолена с помощью третьего закона Ньютона, провозгласившего принцип равенства действия и противодействия. Это исключило неизвестные силы в случае движения твердого тела, однако движение механических систем с более сложными кинематическими условиями не всегда поддавалось ньютонову анализу. Последователи Ньютона считали законы Ньютона абсолютными и универсальными законами природы, интерпретируя их с таким догматизмом, к которому их создатель никогда бы не присоединился. Это догматическое почитание ньютоновой механики частиц помешало физикам отнестись без предубеждения к аналитическим принципам, появившимся в течение XVHI века благодаря работам ведущих французских математиков этого периода. Даже великий вклад Гамильтона в механику не был оценен современниками из-за преобладающего влияния ньютоновой формы механики.  [c.387]

Для иллюстрации достаточно общих закономерностей рассмотрим в несколько упрощенной форме возбуждение параметрического резонанса на модели (рис. 71, а), состоящей из невесомого жесткого стержня с массой на конце, опирающейся на упругодиссипативный элемент. Другой конец стержня шарнирно соединен с основанием, которое перемещается в горизонтальном направлении по периодическому закону Xq (i) с периодом т. Рассмотрим малые колебания стержня в системе координат, жестко связанной с основанием. Тогда к массе должна быть приложена переносная сила инерции F = —тхд. Закон движения основания Xq (t) может быть выбран таким образом, чтобы при 246  [c.246]

Соответственно все законы сохранения движения независимо от того, в какой форме они проявлялнсь — механической, тепловой,электромагнитной, химической или биологической, стали частными случаями общего фундаментального закона природы — закона сохранения энергии.  [c.82]

ЭНЕРГИЯ (от греч. energeia—действие, деятельность) — общая количеств, мера движения и взаимодействия всех видов материи. Э. не возникает из ничего и не исчезает, она может только переходить из одной формы в другую (энергии сохранения закон). Понятие Э. связывает воедино все явления природы.  [c.614]

На ЛМЗ модель заменена копирным вальцом [Л.ЗГ как его изготовление, так и связь с ним резца значи тельно проще, чем при применении пространственной модели поверхности. Именно валец 9 (фиг. 17-10) приводится во вращение около своей оси 10 от вала 3 планшайбы. При четырех логаастях он за один оборот последней должен сделать четыре оборота. Поперечное сечение // вальца неправильной, получаемой по расчету формы. Упирающийся в него щуп J2 то поднимается, то опускается. Следящий механизм точно так же поднимает и опускает резец 3. Закон движения резца должен меняться от одного значения радиуса Я до другого. Поэтому, во-первых, соседние сечения вальца должны иметь разные очертания, а во-вторых, валец должен двигаться по поперечине 6 в направлении своей оси одновременно с передвижкой суппорта 5, что и достигается тем же. шпинделем 7 и гайкой 13 каретки 14 вальца. Таким образом, валец представляет собой как бы ряд нанизанных на общую ось эксцентриков с плавным изменением их поперечных сечений.  [c.243]

Исследователи, изучающие движение сыпучей среды, из общих законов механики могут предсказать основные качественные черты движения. Поэтому к математическим способам описания неизвестных эмпирических зависимостей, в которых выбор вида аппроксимирующей функции осуществлен формальным образом, обычно не прибегают. Наиболее привычной формой описания движения являются дифференциальные уравнения. Достаточно просто решаются дифференциальные уравнения с постоянными коэффициентами. Поэтому сплошную среду описывают моделью, состоящей из системы твердых тел, связанных взаимно и с пове])Хностью лотка со стандартными элементами линейной упругости, линейной вязкости, сухого трения с постоянными коэффициентами и простейшими ударными элементами. Такие модели позволяют получить общее решение, поэтапно используя решения линейных систем. Число масс упругих, вязких, ударных элементов сухого грения определяет число посгоянных, подлежащих определению из эксперимента. С увеличением числа элементов возрастает точность описания экспериментальных результатов. Такие модели способны описывать с достаточной гочносгью все необходимые зависимости — = Кг (о), где вектор а — совокупность всех параметров, влияющих на /(, т. е пространство параметров, в котором ведется эксперимент. Решение дифференциальных уравнений движения дает теоретические значения К . Но эти значения зависят от численных значений параметров модели с . Их определяют, минимизируя квадратическую ошибку между экспери енгальными значениями (aj и теоретическими значениями подсчитанными при тех же комбинациях параметров а,-, при  [c.90]

Проблемы внброзащиты возникают практически во всех областях современной техники, н их решение существенно опирается на специфику системы или реализуемого ею динамического процесса. Выбор законов движения исполнительных органов машин, механизмов, реализующих эти движения, геометрических форм деталей и конструкций, вида их сопряжений и механических характеристик, материалов и способов обработки наряду с функциональными требованиями должен отвечать требованиям вибронадежности и вибробезопасности. Изложению методов рационального проектирования и настройки машин посвящены в значительной мере т. 3 и частично т. 4 справочника. Однако только указанных методов, как правило, оказывается недостаточно и тогда необходимо прибегнуть к использованию более общих подходов, зачастую связанных с введением в конструкцию специальных вибро-защитных устройств и систем. Этим вопросам и посвящено главным образом содержание т. 6.  [c.9]

Запишем уравнение второго закона Ньютона в форме закона сохранения импульса или количества движения. Отметим, что в отечественной литературе по общей физике чаще используется термин импульс , а в курсах теоретической механики - количество движения , в английском языке - momentum .  [c.67]


Теория Кубо и флуктуационно-диссипационная теорема дают нам чрезвычайно общие выражения для коэффициентов переноса, характеризующих линейную реакцию системы на внешнее поле. Известно, однако, что целый класс коэффициентов переноса, таких, например, как вязкость, теплопроводность и диффузия, не принадлежит к этому типу. Они описывают реакцию системы на пространственную неоднородность (см. гл. 13), вызывающую появление потоков вещества, импульса или энергии, которые стре мятся восстановить однородное состояние системы. Очевидно, что силы , вызывающие подобные потоки, невозможно естественным образом записать в форме возмущения микроскопического гамильтониана. Действительно, поведение отдельной молекулы одинаково в однородной и неоднородной системах, однако, внешнее поле влияет на ее законы движения. Отсюда следует, что на микроскопическом уровне механические и термические процессы принципиально отличаются друг от друга. Но макроскопически, напротив, явления обоих типов очень сходны, о чем свидетельствует, например, известное соотношение между коэффициентами электропроводности и диффузии в растворах электролитов. В связи со сказанным естественно возникает мысль — попытаться получить обобщение флуктуационно-диссипационных методов, позволяющее охватить также и термические коэффициенты.  [c.325]


Смотреть страницы где упоминается термин Общая форма закона движения : [c.415]    [c.119]    [c.358]    [c.139]    [c.143]    [c.160]    [c.71]    [c.112]    [c.108]    [c.14]   
Смотреть главы в:

Общие принципы волновой механики  -> Общая форма закона движения



ПОИСК



Акт общей формы (Форма ГУ

Закон движения

Закон сил общий

Форма общая



© 2025 Mash-xxl.info Реклама на сайте