Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегральная форма уравнений газовой динамики

Наиболее общей является интегральная форма уравнений газовой динамики. Уравнения в этой форме допускают разрывные решения, представляющие течения самого общего вида. Законы сохранения массы, изменения количества движения и сохранения энергии в случае плоских и осесимметричных стационарных течений совершенного газа соответственно могут быть записаны в виде  [c.48]


Интегральная форма уравнений газовой динамики  [c.111]

Уравнения газовой динамики в интегральной форме. Приведем уравнения газовой динамики для идеального нереагирующего газа в интегральном виде, не зависящем от выбора системы координат. Закон сохранения массы в произвольном замкнутом объеме пространства Q имеет вид  [c.40]

С этой целью решалась задача об обтекании однородным сверхзвуковым потоком идеального газа конфигураций, изображенных схематически на рис. 3 и образованных полуплоскостями Pi и Р2, проходящими через оси у и z. Векторы нормалей ni и П2 к Pi и Р2 направлены в исследуемую часть возмущенной области и образуют с положительным направлением оси х угол тг/2 + O. Если вектор скорости набегающего потока qoo направлен по оси ж, то при й > О (рис. 3, а) рассматриваемые стороны указанных полуплоскостей обтекаются с образованием скачков уплотнения, а при й < О (рис. 3, б) - центрированных волн разрежения, присоединенных к передним кромкам, совпадающим с осями у и z. Исходные уравнения газовой динамики, записанные в форме интегральных законов сохранения в декартовой системе координат, имеют полностью дивергентный вид. В соответствии с ограничением метода число Маха в набегающем потоке и ориентация векторов ni и П2 должны быть такими, чтобы всюду в расчетной области проекция вектора скорости на ось х была больше скорости звука.  [c.180]

Уравнения газовой динамики с учетом теплопроводности. В теоретических исследованиях движения газа или жидкости используется математическая модель, основу которой составляют уравнения газовой динамики (см., например, [56]). Уравнения газовой динамики отражают классические законы сохранения массы, импульса и энергии. Изменение этих величин с течением времени в выделенном объеме происходит как за счет потоков через ограничивающую данный объем поверхность, так и в результате действия источников и стоков. Выпишем уравнения газовой динамики в интегральной форме при следующих предположениях. Будем считать, что любой вид объемных сил отсутствует, вязкость пренебрежимо мала, но в процессе движения существенную роль может играть перенос тепла, обусловленный механизмом нелинейной теплопроводности.  [c.10]

Соотношения на фронте сильного разрыва. Известно, что при движении газа могут образовываться поверхности, при переходе через которые газодинамические функции терпят разрыв — возникают так называемые ударные волны (сильный разрыв). Уравнения газовой динамики, записанные в дифференциальной форме, имеют смысл в областях непрерывного течения. В общем случае уравнения газовой динамики нужно рассматривать в интегральной форме, например вида (1.7)—(1.9). Рассматривая уравнения (1.7)—(1.9) в окрестности поверхности разрыва, можно получить алгебраические соотношения, выражающие законы сохранения массы, импульса и энергии, которые должны выполняться при переходе через сильный разрыв.  [c.17]


Течения идеального газа (10). 1.1.2. Течения реагирующего газа. Двухфазные течения (12). 1.1.3. Уравнения газовой динамики в координатах Мизеса (13). 1.1.4. Уравнения газовой динамики в дивергентной и интегральной формах. Соотношения на разрывах (16).  [c.3]

Уравнения газовой динамики в дивергентной и интегральной формах. Соотношения на разрывах. Запишем уравнения газовой динамики идеального газа в дивергентной форме, т. е. в форме, когда все компоненты, содержащие искомые функции, находятся под знаком производной. Система уравнений газовой динамики, вы-  [c.16]

Эта система аналогична соответствующей системе из 1 (см. уравнения (1.7) —(1.9)) и может быть получена из общих интегральных уравнений газовой динамики в форме Лагранжа. Контур, по которому здесь ведется интегрирование, лежит в плоско-  [c.46]

Для решения поставленной задачи, т. е. для определения параметров газа в струе и(х, у), Т(х, у), q(x, у) и с(х, у), кроме уже определенных границ струи (17.12) и (17.13) и универсальных профилей параметров в поперечных сечениях слоя смешения (17.4) и (17.5), необходимо определить изменение этих параметров вдоль оси основного участка струи Um x), Тт х), Qm(- ) и Сш( ). Для этого используем следующие основные уравнения газовой динамики в интегральной форме.  [c.337]

В методе интегральных соотношений исходные дифференциальные уравнения записывают в дивергентной форме, что удобно для решения задач газовой динамики, где именно такую форму имеют законы сохранения (см. п, 6 2.1). Рассмотрим двумерный случай. Исходную систему уравнений в частных производных запишем в следующем общем виде  [c.182]

В настоящей главе приведены основные уравнения газовой динамики с учетом физико-химических превращений. Даны уравнения газовой динамики в дифференциальной и интегральной формах, а также их запись в дивергентном виде. Выписаны уравнения газовой динамики, в которых в качестве независимых переменных использованы функции тока. Представлены соотношени5г на поверхностях разрывов. Обсуждены наиболее характерные начальные и граничные условия. Выведены соотношения на характеристиках уравнений газовой динамики. Представлены некоторые фундаментальные аналитические решения основных задач газовой динамики обтекания тел, течения в соплах и струях, задача о распаде произвольного разрыва, задача о взрыве.  [c.31]

В настоящей главе приводятся уравнения газовой динамики в дифференциальной и интегральной формах, в том числе с учетом физико-химических превращений. Выписаны уравнения газовой динамики в координатах Мизеса. Даны соотнопхения на поверхностях разрывов. Обсуждаются наиболее характерные начальные и граничные условия. Представлены некоторые элементарные теории газовой динамики. В 1.1 уравнения приведены без вывода. При необходимости читатель может обратиться, например, к книгам [97, ИЗ, 182, 186, 189].  [c.9]

Законы сохранения (дивергентные формы уравнений) широко применяются в методе интегральных соотношений, при построении консервативных разностных схем и при постановке вариационных задач газовой динамики. Примерами являются публикации [1-4]. Теорема Нетер и ее обобшение [5] позволяют находить законы сохранения для систем дифференциальных уравнений второго порядка. Для применения этих теорем необходимо изучить групповые свойства исходных уравнений [6] и использовать вариационный принцип, из которого эти уравнения следуют. Для вырожденных функционалов, порождающих уравнения первого порядка, теряется взаимно однозначное соответствие между группами, допускаемыми уравнениями, и законами сохранения некоторым группам могут соответствовать дивергентные уравнения, состоящие из нулей [5]. Теорема Нётер использована, например, Ибрагимовым [7] для получения полной системы законов сохранения безвихревых течений газа, описываемых уравнением второго порядка для потенциала скоростей.  [c.17]



Смотреть страницы где упоминается термин Интегральная форма уравнений газовой динамики : [c.217]    [c.425]   
Смотреть главы в:

Прикладная газовая динамика. Ч.1  -> Интегральная форма уравнений газовой динамики

Разностные методы решения задач газовой динамики Изд.3  -> Интегральная форма уравнений газовой динамики



ПОИСК



70 - Уравнение динамики

Газовая динамика

Уравнения газовой динамики

Уравнения интегральные

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте