Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытие оловянные

Покрытия — см. также по их названиям, например. Гальванические покрытия Кадмиевые покрытия Медные покрытия Никелевые покрытия Оловянные покрытия Свинцовые покрытия Цинковые покрытия и т. д.  [c.451]

Моноэтаноламин Диэтил амин солянокислый 70—80 20—30 - Пайка и лужение материалов с серебряным покрытием, оловянным и оловянно-свинцовыми покрытиями  [c.124]


При повышенных частотах используют подшипники высокой точности с массивными сепараторами из латуни, бронзы, алюминиевых сплавов, стеклонаполненных полиамидов, текстолита. Металлические сепараторы подшипников, предназначенных для высоких частот вращения d n > 2-10 мм мин ), с целью повышения антифрикционных свойств изготовляют со специальными покрытиями оловянно-свинцовым, серебряным и др.  [c.255]

В связи С тем, что при наличии двухвалентного олова в щелочном электролите получаются грубые и рыхлые покрытия, оловянные аноды предварительно пассивируют при повыщенном значении анодной плотности тока (в 2—3 раза больше рабочей) в течение 5—10 мин. При этом происходит частичное пассивирование анодов с образованием на них пленки желтовато-золотистого цвета. Обработанные таким образом аноды растворяются с образованием только четырехвалентных ионов олова. После формирования пленки анодная плотность тока может быть снижена. При нахождении анодов в электролите без тока пассивная пленка растворяется, поэтому при перерывах в работе аноды необходимо выгружать и помещать в ванну с водой. Загрузку и выгрузку анодов надо производить под током.  [c.77]

Составы электролитов и режимы. Покрытия оловянно-свинцовыми сплавами с различным содержанием олова применяются главным образом в приборостроении, так как у покрытия чистым оловом после даже непродолжительного хранения ухудшается способность к пайке. Наибольшее распространение получили борфтористоводородные электролиты, составы которых и режимы покрытия приведены в табл. 58.  [c.104]

Большинство бронз является литейными материалами и сварку их применяют только для заварки дефектов или ремонта. Наиболее широко применяют дуговую сварку металлическим электродом. Электроды для сварки бронз представляют собой стержень, состав которого близок к составу основного металла с нанесенным на пего специальным покрытием. Оловянные бронзы рекомендуется сваривать быстро, чтобы не перегреть основной металл, в противном случае возможно выплавление легкоплавкой составляющей,  [c.355]

Иногда достаточно добавить ингибитор коррозии к водной среде, которая находится в контакте со сталью, покрытой оловянным покрытием. Для зашиты стали используются обычные ингибиторы, предназначенные для стали бензоаты, нитриты, хроматы и т. д., которые являются удобными, так как, обеспечивая защиту, они совместимы с изделиями и не увеличивают pH выше 10. В закрытых сосудах, имеющих воздушное пространство, такие ингибиторы не Могут защищать зону выше линии раздела вода — воздух и, возможно, также зону по линии раздела. В этом случае используют летучие ингибиторы. Фруктовые соки, мясные продукты, молоко и молочные продукты, рыбу и большинство овощей, в которых олово по всей вероятности является анодом по отношению к стали, можно хранить в стальной посуде, покрытой оловом. Некоторая коррозия оловянистого покрытия происходит со скоростью, равной скорости компактного олова, и через определенное время полное удаление покрытия будет неизбежно. Слои сплавов в покрытиях, полученных горячим погружением, являются катодными и к олову, и к стали. Условия высокой аэрации могут стимулировать коррозию обоих металлов, одиако этот эффект оказывается незначительным на практике.  [c.423]


Не оказывает коррозионного действия на медь и покрытия оловянное, оловянно-свинцовое серебряное и никелевое не снижает сопротивление изоляции пьезокерамических блоков и преобразователей без промывки мест пайки  [c.239]

Листовой прокат из стали и цветных металлов используют в различных отраслях промышленности. В связи с этим листовую сталь, например, делят на автотракторную, трансформаторную, кровельную жесть и т. д. Расширяется производство листовой стали с оловянным, цинковым, алюминиевым и пластмассовым покрытиями. Кроме того, листовую сталь разделяют на толстолистовую (толщиной 4—160 мм) и тонколистовую (толщиной менее 4 мм). Листы толщиной менее 0,2 мм называют фольгой.  [c.65]

В случае протекторных покрытий (например, цинковых, кадмиевых, а в определенных средах также алюминиевых и оловянных покрытий на стали) гальванический ток в электролите протекает таким образом, что металл катодно защищен (рис. 13.1, Ь). Коррозионное разрушение основного металла предотвращается до тех пор, пока протекает соответствующий ток и сохраняется электрический контакт с покрытием. Следовательно, степень пористости протекторных покрытий, в отличие от коррозионно-стойких, не имеет особого значения. Катодная защита в большинстве случаев обеспечивается тем дольше, чем толще покрытие.  [c.233]

Никелированные металлические поверхности используются в качестве катализаторов реакций, поэтому осажденные слои могут достигать довольно большой толщины. При необходимости увеличить скорость нанесения никеля (а также для нанесения покрытий на стекло и пластмассы) в промышленные составы вводят специальные добавки. К металлам, на которые покрытия осаждают, относятся свинец, оловянный припой, кадмий, висмут, сурьма.  [c.235]

Толщина слоя олова, нанесенного из расплава, составляет от 0,0015 до 0,0038 мм (22,4—56 г/м ). Средняя толщина электролитических покрытий на консервных банках—0,00045 мм (6,71 г/м ). Столь тонкие оловянные покрытия, естественно, являются пористыми, поэтому важно, чтобы олово выполняло функцию протекторного покрытия и предупреждало возникновение питтинга, который приводит к перфорации тонкого стального листа основного металла. Это условие обычно выполняется.  [c.239]

Sn " , которые, как известно, увеличивают водородное перенапряжение, замедляют таким образом коррозию железа в кислотах и способствуют восстановлению органических веществ на железном катоде. Ионы Sn постоянно образуются на поверхности железа при коррозии оловянного покрытия, однако после растворения слоя олова их концентрация падает. Возможно также, что разность потенциалов пары железо—олово благоприятствует адсорбции и восстановлению на катоде органических деполяризаторов, в то время как при меньшей разности потенциалов эти процессы не протекают. Существенным недостатком консервной тары является так называемое водородное вспучивание, которое связано со значительным возрастанием давления водорода в банке. При этом допустимость использования консервов становится сомнительной, так как накопление газов в банке происходит и при разложении продуктов под действием бактерий.  [c.240]

Количество водорода, накапливаемое во время хранения консервов, определяется не только толщиной оловянного покрытия, температурой, химической природой контактирующих пищевых продуктов, но чаще всего составом и структурой стальной основы. Скорость выделения водорода увеличивается при использовании сталей, подвергнутых холодной обработке (см. разд. 7.1), которая является стандартной процедурой для упрочнения стенок тары. Последующая, случайная или умышленная, низкотемпературная термообработка может приводить к увеличению или уменьшению скорости выделения водорода (см. рис. 7.1). Высокое содержание фосфора и серы делает сталь особенно чувствительной к воздействию кислот, в то время как несколько десятых процента меди в присутствии этих элементов могут способствовать уменьшению коррозии. Однако влияние меди не всегда предсказуемо, так как в любых пищевых продуктах присутствуют органические деполяризаторы и ингибиторы, часть которых может выполнять свои функции только при отсутствии в стали примесей меди.  [c.240]


Для предотвращения вредного влияния загрязнения воды ионами Си + можно применять медные трубы, внутренняя поверхность которых покрыта оловом (из так называемой луженой меди). Оловянное покрытие не должно иметь пор, чтобы избежать усиления коррозии меди на незащищенных участках из-за действия олова (или интерметаллических соединений медь—олово), которое является катодом по отношению к меди.  [c.328]

Метод наложения фильтровальной бумаги применим для определения пористости хромовых, никелевых, оловянных покрытий на деталях, конфигурация которых допускает наложение фильтровальной бумаги. На подготовленную деталь накладывают фильтровальную бумагу, пропитанную раствором, таким образом, чтобы между поверхностью детали и бумагой не оставалось пузырьков воздуха. Растворы, применяемые для определения пористости покрытий, приведены в табл. 43.  [c.61]

Олово — серебристо-белый металл, обладающий ясно выраженным кристаллическим строением. При изгибе прутка олова слышен треск, вызываемый трением кристаллов друг о друга. Олово — мягкий, тягучий металл, позволяющий получать путем прокатки тонкую фольгу. Предел прочности при растяжении белого олова колеблется от 16 до 38 МПа. Кроме обыкновенного белого олова, кристаллизующегося в тетрагональной системе, существует серое порошкообразное олово (плотность 5,6 Мг/м ). При сильном морозе на белом олове появляются серые пятна (выделение серого олова), получившие название оловянной чумы. При нагреве серое олово снова переходит в белое. Если нагреть олово до температуры выше 160 °С, оно переходит в третью (ромбическую) модификацию и становится хрупким. При нормальной температуре олово на воздухе не окисляется, вода на него не влияет, а разведенные кислоты действуют очень медленно. Олово используют в качестве защитных покрытий металлов (лужение) оно входит в состав бронз и припоев. Тонкая оловянная фольга (6—8 мкм), применяемая в производстве  [c.217]

ОДНОГО ИЗ вариантов пленочной сверхпроводящей ячейки памяти. На свинцовой подложке I, покрытой тонким слоем диэлектрика, нанесены оловянные пленки в виде петель 2, соединенные в группы цифровым проводом 3. На оловянную пленку через слой диэлектрика напыляются свинцовые пленки X и У. При записи информации через цифровой провод пропускают ток. Одновременно по проводам X и V пропускают токи, которые в сумме создают магнитное поле Я, способное разрушить сверхпроводящее состояние на участ-. ке оловянной петли, расположенном под ними. Вследствие этого ток течет только по верхней части петли. Это состояние сохраняется и после выключения тока в проводах X и Y, хотя оловянная пленка становится полностью сверхпроводящей. Если теперь через цифровой провод пропустить импульс тока, то в петле сформируется циркулирующий незатухающий ток, хранящий поданную информацию (рис. 7.20, б). Для считывания этой информации по проводам X п Y пропускают суммарный ток, разрушающий сверхпроводимость на том же участке оловянной петли, что и ранее. Это приводит к уничтожению тока в петле и наведению в цифровом проводе смыслового импульса (рис. 7.20, в). Такая память обладает рядом замечательных свойств и позволит конструировать запоминающие устройства емкостью до миллиарда ячеек памяти с быстродействием порядка 10- —10- с.  [c.207]

Металлические покрытия из расплавленных металлов наносят обычно на стальные полуфабрикаты. Речь идет об оловянных, цинковых и алюминиевых покрытиях. Железо при соответствующих условиях реагирует с этими металлами и образует химические соединения, так называемые интерметаллические фазы, с помощью которых покрытия соединяются со сталями. Свинец не образует таких фаз с железом, однако с помощью так называемых твердых растворов с оловом и мышьяком можно получить промежуточный слой между сталью и свинцовым покрытием. Образование промежуточных фаз является необходимым условием, и толщина их. должна быть минимальной.  [c.75]

Бензоат натрия Сталь, медь и ее сплавы, алюминий и его сплавы, хромовые, никелевые, цинковые и оловянные покрытия Пропитка упаковочных материалов водным раствором ингибитора, введение его в масла и смазки До двух лет  [c.109]

Основным недостатком тонкого оловянного покрытия является пористость. Механическая обработка после лужения мягкого и пластичного олова позволяет устранить некоторую пористость. Однако эффективно снизить пористость и значительно улучшить внешние качества покрытия можно с помощью процесса, называемого оплавлением. Покрытие на луженом изделии подвергается мгновенному нагреванию под действием пламени, переплавляется и равномерно растекается по поверхности основного слоя, благодаря чему устраняется пористость.  [c.75]

Расплавленный свинец не смачивает поверхность большинства металлов, а следовательно, простое погружение в чистый свинец не дает полного и качественного покрытия. Однако при использовании ванны со сплавом свинца и олова можно получить достаточно качественное покрытие. Сплавы, содержащие 20— 25% олова, образуют свинцово-оловянное покрытие. Можно использовать сплавы с более низким содержанием олова (менее 2%) и получить свинцовые покрытия. Рабочая температура ванны изменяется в зависимости от процентного содержания сплавляющего металла.  [c.75]

Лужение медных сплавов погружением в растворы солей, содержащих двухвалентное олово, применяется при пайке. Цинк осаждается на алюминии погружением в горячие, щелочные, цинкатные растворы в целях получения тонкого покрытия как основы для последующего электроосаждения других металлов, в основном меди, никеля и хрома. В результате химического осаждения можно получить чисто декоративные оловянные и серебряные покрытия.  [c.83]


Щелочные оловянные растворы используют в случае загрузки на подвеске. Покрытия наносят при температуре порядка 65° С с использованием чистых оловянных или нерастворимых анодов, имеющих никелевое покрытие. Эти растворы имеют высокий выход по току на катоде (60—90%) и обладают  [c.98]

Характерные области применения оловянных покрытий  [c.121]

Метод нагрева. Никелевые, оловянные и оловянно-никелевые покрытия можно испытывать на равномерность адгезии путем нагревания до 150—350° С (в зависимости от характера основного материала) и охлаждения в воде, не вызывая при этом повреждений (Английские стандарты 1224, 1872 и 3597).  [c.150]

Покрытия оловянно-свинцовыми сплавами с различным содержанием олова (18, 30, 40 и 60%) применяются главным образом в радиотехнической промышленности, так как покрытие чистым оловом после длительного нахождения на воздухе ухудшает свою способность к пайке. Гальваническое осаждение сплавов применяют также вместо горячего облужи-ваиия.  [c.123]

Покрытие оловом путем погружения изделия в расплавленный металл было известно уже римлянам, однако, производство луженых листов было начато в Германии лишь в середине XVII века. В Англии этот процесс получил достаточно широкое распространение в XVIII веке. В Америке и на отечественных заводах — только в конце XIX века. Температура плавления олова сравнительно низка (232°), и вследствие того, что олово легко сплавляется с железом, процесс лужения горячим способом достаточно прост и не встречает ка-ких-либо затруднений. Горячий способ лужения в ряде случаев уступает электролитическому способу покрытия оловом. Так, при горячем лужении изделий сложной конфигурации имеет место чрезмерно непроизводительный расход олова вследствие невозможности регулировать толщину покрытия. Оловянные покрытия, пол гченные гальваническим путем, отличаются большей равномерностью по толщине, чем покрытия, полученные горячим способом Однако, оловянные покрытия, полученные горячим способом, в меньшей степени склонны к переходу в серую модификацию при низких температурах, и потому полуда, полученная гальваническим способом, подвергается иногда очень сложной дополнительной операции оплавления.  [c.179]

ЭТО имеет чрезвычайно малую толщину, обычно менее 0,25 и. Более толстое покрытие слоем сплава можно быстрее получить путем вытеснения олова из расплавленных солей. Покрытия оловянным сплавом на обычных металлах получаются при восстановлении олова и летучего 5пС12 в атмосфере водорода [7]. Металлизацию применяют для изделий, не поддающихся покрытию оловом другими способами, или в случае ремонта установок, которые почему-либо нельзя демонтировать для повторного покрытия оловом. Способом металлизации можно получить толстые покрытия, хотя структура их все же более пориста, чем при нанесении другими способами.  [c.898]

Для защиты конструкционного материала не всегда требуется высокая температура плавления покрытия. Оловянно-а[люминиевое покрытие может работать в среде, движущейся с высокой скоростью, и не удаляться, даже будучи в жидком состоянии. Система образует расплавленный слой на поверхности изделия во в )емя работы при высокой температуре. В табл. 50 Приведёйы такого рода покрытия. Отметим, что два суспензионных блОвянно-алюминие-вых покрытия работают при температурах, намного превышающих температуры плавления.  [c.289]

Для предохранения крепежных деталей от коррозии применяются соответствующие защитные покрытия. ГОСТ 1759-70 устанавливает следующие условные обозначения покрытий цинковое покрытие с хроматированием-01 кадмиевое с хромати-рованием-02 многослойное (медь-никель)-03 многослойное (медь-никель-хром) -04 окисное-05 фосфатное с промасливанием-06 оловянное-07 медное-08 цинковое-09 окисное анодизационное с хроматированием-10 пассивное -11 серебряное-12. Детали, выполняемые без покрытия, характеризуются индексом 00  [c.165]

Л63, ЛС59—1 ГОСТ 15527-70 Без покрытия Никелевое Многослойное— никель-хром Оловянное Пассивное  [c.247]

Ежегодно выпускается несколько миллионов тонн луженой жести, и большая часть ее используется для изготовления консервных банок . Так как электроосажденные оловянные покрытия равномернее полученных из расплава и поэтому их можно сделать тоньше, то большую часть жести в настоящее время составляет так называемая электролитическая белая жесть. Не-токсичность солей олова делает луженую жесть идеальной для изготовления тары для жидких и твердых пищевых продуктов .  [c.239]

Кроме кислот и щелочей, которые могут быть как случайными, так и естественными компонентами, пищевые продукты обычно содержат различные органические вещества. Некоторые из них, как отмечалось выше, являются комплексообразователями, другие действуют как ингибиторы коррозии или как катодные деполяризаторы. При контакте с продуктами с низким содержанием ингибиторов, но богатыми деполяризаторами пищевая тара кор-, родирует быстрее, чем если продукты содержат кислоты. Корро- зия внутреннего оловянного покрытия консервных банок из-за наличия органических деполяризаторов обычно протекает без выделения водорода, или оно незначительно. Однако, когда оловянное покрытие полностью прокорродирует, последующая коррозия протекает обычно с выделением водорода. Причина такого поведения точно не установлена, но можно предположить, что ионы  [c.239]

Потенциал кадмия во многих средах близок потенциалу алюминия, поэтому кадмированные сталью винты, болты, детали и пр. можно применять в непосредственном контакте с алюминием. Считается, что можно с успехом использовать и оловянные покрытия. Цинк имеет несколько отличное значение потенциала, однако его также можно применять в большинстве случаев. В контакте с алюминием цинк является анодом и, следовательно, катодно защищает алюминий против инициации питтинга в нейтральных и слабокислых средах (см. разд. 12.1.6). Однако в щелочах происходит перемена полярности, и цинк ускоряет коррозию алюминия. Магний является анодом по отношению к алюминию, но при контакте этих металлов (например, в морской воде) возникает столь большая разность потенциалов и протекает столь большой ток, что алюминий может оказаться катодно переза-щищенным и вследствие этого будет разрушаться. Алюминий корродирует в меньшей степени, если он легирован магнием. Показано, что алюминий высокой чистоты может находиться в контакте с магнием без вреда для обоих металлов [24], поскольку в отсутствие примесей железа, меди и никеля, действующих как эффективные катоды, гальванический ток в этой паре невелик.  [c.351]

Бронзы оловянные (БрОФб, 5-0,15 и др.), алюминиево-железные (БрАЖ9-4 и др.), свинцовые (БрСЗО) и прочие, обладающие хорошими антифрикционны.ми сворютвами. Вкладыши из них имеют высокие прочность II жесткость, хорошо работают при ударах, но сравнительно медленно прирабатываются. Свинцовую бронзу применяют для покрытия рабочих поверхностен вкладышей при значительных  [c.412]

Олово используют в качестве защитных покрытий металлов (лузюение) оно входит в состав бронз и припоев. Тонкая оловянная фольга (6—8 мкм), применяемая в производстве некоторых типов конденсаторов, обычно содержит присадки до 15% свинца и до 1% сурьмы для облегчения прокатки и улучшения механической прочности. Оловянно-свинцовую фольгу толщиной 20—40 мкм применяют в качестве обкладок в слюдяных конденсаторах.  [c.34]


Бронзы оловянные (Бр010Ф1, БрОбЦбСЗ и др.) обладают наилучшими антифрикционными свойствами. Алюминиево-железные (БрА9ЖЗ и др.), свинцовые (БрСЗО) имеют достаточно высокие механические характеристики, но сравнительно плохо прирабатываются, вызывают повышенное изнашивание цапф, поэтому применяются в паре с закаленными цапфами. Свинцовую бронзу применяют для покрытия рабочих поверхностей вкладышей при значительных ударных и знакопеременных нагрузках, например подшипники коленчатого вала двигателя внутреннего сгорания и т. п. Бронзы широко применяют в крупносерийном и массовом производстве.  [c.301]

Радиоактивный измеритель массы покрытия РИМП-1 обеспечивает контроль поверхностной плотности оловянного покрытия (2—10 г/м ) на стальной полосе в процессе электролитического лужения с погрешностью измерения (0,45—0,02й ) т/м , где d — толщина покрытия в миллиметрах.  [c.398]

Специализированный прибор ИТМ-10 предназначен для измерения толщины медного покрытия в отверстиях печатных плат. Толщина контролируемых плат 1 1,5 2 мм, удельная электрическая проводимость покрытия (44 rf 2) МСм/м. Прибор комплектуется двумя миниатюрными ВТП специальной конструкции с ВЬ.ТЯГ1уТЫМИ вдоль оси контролируемого отверстия обмотками (см. рис. 4, б). На показания прибора практически не влияет наличие защитного слоя оловянно-свинцового покрытия.  [c.151]

За рубежом запатентован метод получения оловянных покрытий погружением изделий из меди и ее сплавов в раствор, содержащий в 1 л воды 20 г хлористого олова. 75 г тиокарбамида, 50 мл концентрированной соляной кислоты, 16 г гипофосфита натрия и 1 г смачиваю щего вещества (например октилфеноксиэтанола) при pH 1—2 Гипофосфит вводят в раствор для повышения его устойчивости по составу Вместо соляной кислоты при наличии тиокарбамида могут быть использованы и другие кислоты уксусная лимонная малоновая Раствор может работать в широком (от комнатной до кипения) интервале температуры  [c.89]

Горячее лужение напоминает горячее цинкование и алюминиро-вание с обработкой травлением в кислоте и введением хлорид-ного флюса в расплавленный металл. Рабочая температура для ванны расплавленного олова составляет 300° С. Обработанное изделие выводится из ванны с расплавленным оловом через жировую ванну для нанесения слоя пальмового масла достаточной толщины. Если не производится контролируемой закалки , благодаря которой температура изделия в конце процесса составляет 240° С, то может произойти окисление оловянного покрытия.  [c.74]

Кадмиевые, оловянные или цинковые покрытия могут отделяться от основных слоев стали при использовании раствора соляной кислоты, содержащей трехокись или трихлорид сурьмы, который действует как ингибитор и приостанавливает воздействие кислоты на сталь (Английские стандарты 1706 и 1872). Кадмий можно отделить в 30%-ном растворе азотнокислого аммония, а цинк — в растворе 5 г персульфата и 10 мл гидрата окиси аммония в 90 мл воды (Английский стандарт 3382). Покрытия из сплавов олова с никелем отделяют электролитически в растворе, содержащем 20 г/л едкого натра и 30 г/л цианистого натрия, а медное покрытиепогружением в концентрированную фосфорную кислоту (Английский стандарт 3597). Серебряные покрытия вначале погружают в смесь концентрированных азотной и серной кислот в соотношении 1/19, а после потемнения— в 250 г/л раствора трехокиси хрома в концентрированной серной кислоте (Английский стандарт 2816). Основной слой отделяют от покрытия золотом путем растворения в концентрированной азотной кислоте. Отфильтрованное золото промывают, просушивают и взвешивают (Английский стандарт 4292).  [c.143]


Смотреть страницы где упоминается термин Покрытие оловянные : [c.331]    [c.105]    [c.71]    [c.239]    [c.20]    [c.33]   
Коррозия и борьба с ней (1989) -- [ c.239 , c.241 ]



ПОИСК



Зависимость пористости оловянного покрытия от его толщины

Защитные покрытия оловянные

Кадмиевые покрытия Медные покрытия Никелевые покрытия Оловянные покрытия Свинцовые покрытия

Контактное оловянирование. Снятие дефектных оловянных покрытий

Методы определения качества оловянного покрытия

Назначение и область применения оловянных покрытий Сравнительная характеристика электролитов

О влиянии различных факторов на качество оловянного покрытия

Образование оловянного покрытия

Оловянирование — Декоративная отделка — 1.2С6 — Оплавление 1.206 Пассивирование 1.206 — Свойства оловянных покрытий 1.199, 200—Удаление покрытий

Оловянные покрытия выход по току

Оловянные покрытия декоративная отделка

Оловянные покрытия оплавление

Оловянные покрытия пассивирование

Оловянные покрытия свойства

Оловянные покрытия удаление

Оловянные покрытия электролитически

Оплавление, пассивирование, декоративная отделка оловянных покрытий

Осаждение блестящих оловянных покрытий

Осаждение оловянного покрытия, легированного висмутом (сплав олово—висмут)

Покрытия и составы влагостойки оловянные

Покрытия оловянные — Пористость 197 — Твердость

Покрытия, коррозия медь-оловянные (спекулум)

Покрытия, коррозия оловянные

Свойства и применение оловянных покрытий

Формирование оловянного покрытия



© 2025 Mash-xxl.info Реклама на сайте