Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Покрытия, коррозия оловянные

В щелочных растворах олово электроотрицательнее железа и поэтому растворяется, а железо остается пассивным. В фруктовых соках и других кислых органических растворах олово ведет себя как анодное покрытие по отношению к железу, т. е. луженое железо электрохимически защищено. Некоторые консервированные продукты выделяют водород, который проникает в поры оловянного покрытия. Коррозия оловянного покрытия ускоряется из-за наличия окислителей (нитраты, нитриты, оксикислоты). В свежем молоке покрытия корродируют со скоростью 0,15—0,38 г/м -24 ч при температуре 6—62°С, а в сметане и масле со скоростью 0,67—1,1 г/м2-24 ч при 62°С. В фруктовых соках скорость коррозии составляет 0,1—2,5 г/м -24 ч при обычной температуре и 12,8—35 г/м2-24 ч при температуре кипения. Бензин и масла практически слабо влияют на оловянные покрытия Галогены вызывают сильную коррозию — хлор, бром и иод даже при низких температурах, а фтор выще 100°С. Кислород агрессивен по отношению к олову при температурах выше 100°С и при наличии влаги.  [c.145]


Sn " , которые, как известно, увеличивают водородное перенапряжение, замедляют таким образом коррозию железа в кислотах и способствуют восстановлению органических веществ на железном катоде. Ионы Sn постоянно образуются на поверхности железа при коррозии оловянного покрытия, однако после растворения слоя олова их концентрация падает. Возможно также, что разность потенциалов пары железо—олово благоприятствует адсорбции и восстановлению на катоде органических деполяризаторов, в то время как при меньшей разности потенциалов эти процессы не протекают. Существенным недостатком консервной тары является так называемое водородное вспучивание, которое связано со значительным возрастанием давления водорода в банке. При этом допустимость использования консервов становится сомнительной, так как накопление газов в банке происходит и при разложении продуктов под действием бактерий.  [c.240]

Скорость коррозии оловянных покрытий в сельской атмосфере составляет около 0,02 мкм/год, в промышленной атмосфере — до 0,1 мкм/год. Средняя скорость коррозии покрытия в морской воде составляет 0,07—0,2 мкм/год.  [c.91]

Благодаря меньшей пористости, чем 5 свинцовых и оловянных покрытий, свинцово-оловянные покрытия, содержащие 5% олова, хорошо защищают от коррозии в морской воде. Для антифрикционных целей наносят покрытия ПОС-5-12, содержащие 5—12% олова. Радиаторные трубки тракторов, тепловозов и т. п. покрывают сплавом ПОС-18-25, содержащим 18—25% олова.  [c.575]

Жестяные банки изготовляют из белой жести, представляющей собой тонкую листовую либо рулонную сталь, покрытую с обеих сторон оловом. Во избежание коррозии оловянную поверхность покрывают слоем лака либо эмали, а также производят специальную обработку изготовленных банок (пассивирование). Цель этих мероприятий — предотвратить коррозию жести в результате воздействия содержащихся в продукте кислот либо электролитических процессов.  [c.325]

Количество водорода, накапливаемое во время хранения консервов, определяется не только толщиной оловянного покрытия, температурой, химической природой контактирующих пищевых продуктов, но чаще всего составом и структурой стальной основы. Скорость выделения водорода увеличивается при использовании сталей, подвергнутых холодной обработке (см. разд. 7.1), которая является стандартной процедурой для упрочнения стенок тары. Последующая, случайная или умышленная, низкотемпературная термообработка может приводить к увеличению или уменьшению скорости выделения водорода (см. рис. 7.1). Высокое содержание фосфора и серы делает сталь особенно чувствительной к воздействию кислот, в то время как несколько десятых процента меди в присутствии этих элементов могут способствовать уменьшению коррозии. Однако влияние меди не всегда предсказуемо, так как в любых пищевых продуктах присутствуют органические деполяризаторы и ингибиторы, часть которых может выполнять свои функции только при отсутствии в стали примесей меди.  [c.240]


Для предотвращения вредного влияния загрязнения воды ионами Си + можно применять медные трубы, внутренняя поверхность которых покрыта оловом (из так называемой луженой меди). Оловянное покрытие не должно иметь пор, чтобы избежать усиления коррозии меди на незащищенных участках из-за действия олова (или интерметаллических соединений медь—олово), которое является катодом по отношению к меди.  [c.328]

Оловянные покрытия толщиной до 12 мкм подверглись сильной коррозии.  [c.80]

Среди покрытий мягкими металлами оловянные покрытия дают хорошие результаты при жестких режимах трения. Олово обладает значительной пластичностью, стойкостью к коррозии, имеет низкую температуру плавления (231,9° С) и способно многократно деформироваться без разрушения. Это обеспечивает успешное применение оловянного покрытия для поршневых колец и поршней двигателей внутреннего сгорания. Оловянное покрытие при условии хорошего сЦепления с основой детали действует при трении как жидкая смазка, локализуя процесс металлического взаимодействия поверхностей в слое олова, и устраняет, таким образом, заедание при значительных удельных давлениях (рис. 82, 83), облегчает приработку.  [c.163]

Как гальваническое, так и горячее (из расплавов) нанесение оловянных покрытий (лужение) — один из массово применяемых способов защиты поверхности черных и цветных металлов от коррозии или подготовки их к соединению пайкой мягкими припоями. Основные типы применяемых электролитов — кислые, щелочные, цианистые.  [c.240]

Лужение металлоизделий производится с целью защиты их от ржавления (коррозии), подготовки поверхностей деталей к паянию мягкими припоями или перед заливкой подшипников баббитом. Изделия, изготовленные, например, из меди, особенно пищевые котлы, окисляясь, покрываются зеленой пленкой пища из такой посуды непригодна к употреблению, так как она содержит ядовитые окислы. Олово же не подвергается окислению, поэтому оно издавна применяется для защиты от коррозии консервной тары, столовых приборов, кухонной посуды и других изделий, связанных с хранением, приготовлением и транспортированием пищевых продуктов. Применяется олово также для предохранения от окисления контактов и деталей радиоаппаратуры, для защиты кабелей от действия серы, находящейся в электроизоляционном слое резины, и т. п. Оловянные покрытия чрезвычайно пластичны и легко выдерживают вальцовку, штамповку и вытяжку. Детали, подвергнутые лужению, легко паяются.  [c.370]

Оловянное покрытие в сероводороде, насыщенном влагой, а также в смеси сероводорода с воздухом при 100%-ной влажности, является устойчивым. Аналогичным же образом ведет себя и свинцовое покрытие. Оба эти покрытия являются катодами по отношению к железу и с возникновением коррозии основного металла, из-за дефектов в покрытиях, начинают отслаиваться. Медные и фосфатные покрытия разрушаются с первых же дней и защитой служить не могут.  [c.197]

В некоторых условиях полного погружения коррозия меди или латуней может быть значительно ускорена за счет пор и дефектов в оловянных покрытиях (р).  [c.179]

Оловянное покрытие ведет себя иначе, поскольку олово катод-но го отношению к железу в нормальных условиях оно может ускорять коррозию в несплошностях покрытий за счет наличия большой эф ктивной катодной поверхности. Иногда при использовании оловянного покрытия возникают точечные коррозионные поражения.  [c.151]

Стойкость олова частично связана и с высоким перенапряжением водорода. В отсутствие кислорода другая единственно возможная катодная реакция протекает с очень малой скоростью. Это абсолютно необходимо, так как должна быть исключена опасность выделения водорода внутри закатанной луженой банки. Если даже возникнут несплошности в оловянном покрытии по стали, тО вьщеление водорода будет происходить весьма медленно вследствие высокого перенапряжения водорода. Иногда добавляют ингибиторы, хотя в некоторых случаях они могут содержаться в консервируемых продуктах в естественном виде последние, разумеется,, могут содержать и стимуляторы коррозии.  [c.152]

Покрытия, получаемые электролитическим спосо,бом (гальванические покрытия). Эти покрытия образуются в результате электролитического осаждения металла из раствора его соли на поверхность защищаемых изделий (катод) например изделий из нелегированной стали. К защитным гальваническим покрытиям следует отнести цинковые (защищающие металлы от коррозии на воздухе и в пресной воде при температуре до 70 °С) свинцовые (предохраняющие металл от воздействия сернистых газов, серной и сернистой кислот и их солей) никелевые (защищающие металл от коррозии в щелочах) оловянные (предохраняющие металл от коррозии при азотировании) кадмиевые (стойкие в морской воде и растворах хлоридов).  [c.134]


Атмосферную коррозию, протекающую под молекуляр ным слоем влаги (до 10 нм), называют сухой атмосферной коррозией. Эта разновидность коррозии характеризуется поверхностным окислением металла по химическому механизму взаимодействия какого-либо реагента а газообразном виде. Например кислород воздуха или сероводород, клк примеси в воздухе, взаимодействуют с поверхностью металла (потускнение никелевых, цинковых, оловянных покрытий, латунных изделий, почернение медных, серебряных покрытий).  [c.137]

Большое количество деталей двигателей внутреннего сгорания работает в условиях воздействия нагретых до температуры 100° дизельного топлива и масла. Применение свинцовых и цинковых покрытий для таких деталей неэффективно вследствие их низкой коррозионной стойкости по отношению к органическим кислотам дизельного топлива при повышенной температуре. Оловянные и кадмиевые покрытия в этих условиях более надежно защищают стальные детали от коррозии. Однако олово и кадмий относятся к числу дефицитных и дорогостоящих металлов.  [c.141]

Оловянные покрытия различных деталей (изделий) применяют потому, что многие металлы под действием воздуха, воды, кислот и других веществ окисляются, т. е. подвергаются коррозии. Например, - стальные изделия покрываются ржавчиной (бурый налет), которая постепенно проникает в глубь металла и приводит его в негодность. Детали (изделия), изготовленные из меди, особенно пищевые котлы, окисляются, покрываются зеленой пленкой пища из такой посуды не пригодна к употреблению, так как содержит ядовитые окислы. Олово применяют в промышленности для покрытия лужением самых разнообразных изделий. Лужение применяют также перед паянием и заливкой подшипников баббитом .  [c.277]

Никелирование применяется в машиностроении, приборостроении и других отраслях промышленности. Никелем покрывают детали из стали и цветных металлов для защиты нх от коррозии, декоративной отделки, повышения сопротивления механическому износу. Благодаря высокой коррозионной стойкости в растворах щелочей никелевые покрытия применяют для защиты химических аппаратов от щелочных растворов. В пищевой промышленности никель может заменять оловянные покрытия. В оптической промышленности получил распространение процесс черного никелирования.  [c.51]

Алюминий и его сплавы находят широкое применение в народ--ном хозяйстве страны. Гальванические покрытия на алюминии применяют для защиты от коррозии, придания декоративных свойств (медь, никель, хром), возможности пайки (никель, медь, оловянные сплавы), повышения стойкости к износу (хром, никель), уменьшения переходного сопротивления контактов (серебро, родий) и др.  [c.111]

Олово электрохимически не защищает железоуглеродистые сплавы против коррозии, потому что потенциал олова (—0,146 в) менее электроотрицателен, чем потенциал железа поэтому оловянное покрытие защищает черные металлы от ржавления только тогда, когда оно сплошное и беспористое. В противном случае олово даже ускоряет коррозию.  [c.154]

Сплав олово — никель. Покрытие сплавом олово — никель, содержащее 65% 5п, обладает высокой химической стойкостью по отношению ко многим агрессивным средам разбавленным серной и соляной, концентрированной азотной кислотам, растворам хлористого натрия и в условиях 100%-ной влажности [167, 185]. Коррозионные испытания в условиях промышленной атмосферы [185] показали, что сплав, осажденный с подслоем меди, обладает значительно большей коррозионной стойкостью, чем никелевое покрытие. Следует отметить, что оловянно-никелевое покрытие, нанесенное без подслоя меди, в атмосферных условиях не предохраняет сталь от коррозии.  [c.51]

Установлено также [242], что при легировании покрытия из сплава свинец — олово (93% РЬ и 7% 5п). цинком (до 1%) можно в значительной степени увеличить его коррозионную стойкость. Ускоренные коррозионные и эксплуатационные испытания показали, что покрытие толщиной 5 мк хорошо защищает от коррозии детали автомобильного двигателя и успешно заменяет оловянное и кадмиевое покрытие.  [c.59]

Ингибитор коррозии оловянных покрытий в I4 и углеродистой стали в керосине (топливо Т-1) [221, 412]. В концентрации 0,05—0,1% применяется для хранения названных продуктов.  [c.17]

Покрытия, коррозия латунные 608 магниевые 586, 587 медные 586, 587, 684 медь-никелевые 608, 684 медь-оловянные (спекулум) 684 никелевые 586, 587, 608, 684 оловянные 608 свинцовые 586, 608 фторопластовые 783, 785 хром-никелевые 608 хромовые 608 цинковые 586, 587, 600, 608 Поляризационные кривые железа (схема) 76 карбонильного, содержащего 0,27% С 89  [c.829]

Нормальный потенциал олова по отношению к его двухвалентным ионам равен — 0,14 в, т. е. положительнее нормального потенциала железа. Поэтому по отношению к железу олово является катодным покрытием и защищает его от коррозии механически, для чего покрытие оловом должно быть беспор истым. Надежную электрохимическую защиту от коррозии оловянные покрытия обеспечивают медным деталям.  [c.114]

Наибольшее распространение в промышленности получили сплавы свинца с оловом. Эти сплавы используют для защиты от коррозии, как антифрикционные, для облегчения пайки деталей, для обеспечения спекания изделий. Покрытия свинцово-оловяни-стыми сплавами, содержащими 5 % 5п, отличаются лучшей коррозионной стойкостью в морской воде, чем свинец. Покрытия, содержащие от 5 до 17 % 5п, применяют как антифрикционные,  [c.243]

Олово является анодом по отношению к меди в воде и во всех растворах, исключая те, где медь, растворяясь, образует комплексы, например концентрированный раствор аммиака. В воде коррозия оловянного покрытия развивается так же локально, как и компактного олова, однако при достижении медного слоя скорость коррозии замедляется. Ио это обычное поведение может начптельпо тменптся в результате влияния слоев типа олова — медь в покрытии.  [c.425]


Пищевые продукты, помимо кислот и щелочей, содержат различные органические вещества. Некоторые из этих веществ, как упоминалось выше, являются комплексоббразующими агентами, другие действуют как ингибиторы коррозии или как катодные деполяризаторы. Пищевые продукты с малым содержанием веществ-ингибиторов и высоким содержанием веществ-деполяризаторов могут вызвать более сильную коррозию пищевых сосудов, чем продукты с высокой кислотностью. Из-за присутствия органических деполяризаторов коррозия оловянного покрытия на внутренней поверхности сосудов обычно происходит при отсутствии или очень небольшом выделении водорода. Замечено, что, после того как оловянное покрытие полностью прокорродирует, дальнейшая коррозия обычно сопровождается выделением водорода. Причина такого поведения точно не установлена, ее можно связать с тем, что ионы которые известны как ингибиторы коррозии железа в кислотах, повышают перенапряжение выделения водорода, способствуя этим восстановлению органических веществ на железном катоде. Двухвалентные ионы олова непрерывно образуются на поверхности железа в процессе коррозии слоя олова, однако после его полного растворения их становится недостаточно. Возможно также, что при разности потенциалов пары Ре—5п происходит адсорбция и восстановление органических деполяризаторов на катодных участках, а при меньших разностях потенциалов эти процессы не имеют места. Консервные банки могут разрушаться также вследствие так называемого водородного вспучивания в результате возникновения внутри банки значительного давления водорода.  [c.193]

Г а н н у ш к и н а С. В., Защита стальных изделий от коррозии оловянно-цинковым покрытием. Центральное бюро технической ииформации, Москва, 1956.  [c.39]

Для предохранения крепежных деталей от коррозии применяются соответствующие защитные покрытия. ГОСТ 1759-70 устанавливает следующие условные обозначения покрытий цинковое покрытие с хроматированием-01 кадмиевое с хромати-рованием-02 многослойное (медь-никель)-03 многослойное (медь-никель-хром) -04 окисное-05 фосфатное с промасливанием-06 оловянное-07 медное-08 цинковое-09 окисное анодизационное с хроматированием-10 пассивное -11 серебряное-12. Детали, выполняемые без покрытия, характеризуются индексом 00  [c.165]

Кроме кислот и щелочей, которые могут быть как случайными, так и естественными компонентами, пищевые продукты обычно содержат различные органические вещества. Некоторые из них, как отмечалось выше, являются комплексообразователями, другие действуют как ингибиторы коррозии или как катодные деполяризаторы. При контакте с продуктами с низким содержанием ингибиторов, но богатыми деполяризаторами пищевая тара кор-, родирует быстрее, чем если продукты содержат кислоты. Корро- зия внутреннего оловянного покрытия консервных банок из-за наличия органических деполяризаторов обычно протекает без выделения водорода, или оно незначительно. Однако, когда оловянное покрытие полностью прокорродирует, последующая коррозия протекает обычно с выделением водорода. Причина такого поведения точно не установлена, но можно предположить, что ионы  [c.239]

Потенциал кадмия во многих средах близок потенциалу алюминия, поэтому кадмированные сталью винты, болты, детали и пр. можно применять в непосредственном контакте с алюминием. Считается, что можно с успехом использовать и оловянные покрытия. Цинк имеет несколько отличное значение потенциала, однако его также можно применять в большинстве случаев. В контакте с алюминием цинк является анодом и, следовательно, катодно защищает алюминий против инициации питтинга в нейтральных и слабокислых средах (см. разд. 12.1.6). Однако в щелочах происходит перемена полярности, и цинк ускоряет коррозию алюминия. Магний является анодом по отношению к алюминию, но при контакте этих металлов (например, в морской воде) возникает столь большая разность потенциалов и протекает столь большой ток, что алюминий может оказаться катодно переза-щищенным и вследствие этого будет разрушаться. Алюминий корродирует в меньшей степени, если он легирован магнием. Показано, что алюминий высокой чистоты может находиться в контакте с магнием без вреда для обоих металлов [24], поскольку в отсутствие примесей железа, меди и никеля, действующих как эффективные катоды, гальванический ток в этой паре невелик.  [c.351]

Оловянное покрытие электролитическое применяется для защиты от коррозии предметов оборудования пищевой промышленности, контактов, поршневых колец, а также для защиты медного кабеля перед покрытием его резиной с последующей вулканизацией и для местной защиты сгальных изделий от азотизации (при частичном азотировании). Оловянное покрытие контактное применяется с целью улучшения приработки алюминиевых поршней.  [c.714]

Олово применяется в основном как легирующий компонент и как защитное покрытие на стальных, медных и латунных изделиях. Оно проявляет высокую коррозионную стойкость в возд) хе, природных водах и в средах пищевой промышленности (малая токсичность продуктов коррозии). Под действием загрязненного воздуха (SOj, хлориды, HiS) покрытия быстро тускнеют или темнеют.Под влиянием низкой температуры обычная модификащ1я олова (белое олово) может превратиться в серый порошок (серое олово), при этом оловянное noR-рытие теряет свои защитные свойства. Это явление называется "оловянной чумой", так как разрушение может перебрасываться на оловянные предметы, соприкасающиеся с "зараженным" предметом или находящиеся рядом с ним.  [c.89]

Сплавы цветных металлов. Бронза — сплавы на основе меди обладают высокими антифрикционными свойствами, сопротивлением коррозии и технологичностью. Наилучшие антифрикционные свойства у оловянных бронз, в частности БрОЮНФ. Свинцовые бронзы вследствие их низкой твердости применяют только в виде покрытий, они требуют повышенной твердости и качества сопряженной трущейся поверхности. Алюминиевые бронзы с добавкой железа применяют при малых скоростях скольжения и повышенных давлениях при закаленных сопряженных поверхностях.  [c.13]

Из средств противокоррозионной защиты были изучены (Шкловским) медные, оловянные, свинцовые, цинковые и фосфатные покрытия. В сероводороде, насыщенном влагой, а также в смеси воздуха с сероводородом (5% НгЗ), насыщенном влагой, цинковое покрытие оказалось вполне устойчивым, и железо предохранялось им от коррозии.  [c.197]

Коррозия луженых консервных банок — сложный процесс, опеределяемый многими факторами, важность которых зависит от условий. Так, например, соединения серы реагируют с оловом и создают пленки, препятствующие проявлению защитного действия полуды. Важным моментом является образование железооловян ного соединения FeSng в процессе оплавления электролитически полученного оловянного покрытия либо при горячем лужении. Это соединение инертно в условиях, существующих внутри луженной консервной банки. Ионы двухвалентного олова в растворе замедляют растворение стали, воздействуя на эффективность анодного ингибирования. Имеются и другие важные факторы. Их совместное влияние оценивается различными испытаниями луженых консервных банок, связывающими- длительность хранения с характером содержимого.  [c.152]

Оловянно-никелевые покрытия с содержанием олова 65% обладают высокой стойкостью к корро зии в атмосферных условиях, в том числе и при наличии в атмосфере сернистокислых соединений. В водных растворах они пассивны и устойчивы к уксусу, щелочам, фруктовым сокам и др. Способность этих покрытий усиливать коррозию металла лодложки можно предотвратить путем тщательного яанесения сплава в два слоя с промежуточным осаждением тонкого слоя меди. Оловянно-никелевые покрытия широко применяются для металлоизделий, используемых в закрытых помещениях.  [c.153]


К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2.  [c.29]

Рис. 6.12. Коррозия олова (х), белой жести (+) и гальванического оловянного покрытия (о) в 1 и. растворе МН40Н при 30° С. У олова и белой жести покрытия удалены [55]. Рис. 6.12. <a href="/info/235776">Коррозия олова</a> (х), <a href="/info/63248">белой жести</a> (+) и гальванического <a href="/info/6715">оловянного покрытия</a> (о) в 1 и. растворе МН40Н при 30° С. У олова и <a href="/info/63248">белой жести</a> покрытия удалены [55].
Свинцевание применяется для предохранения от коррозии реторт, труб и другой аппаратуры химической промышленности. Рабочая температура ванны при покрытии чистым свинцомоколо 350° С. Толщина защитного слоя свинца должна составлять 0,5—0,7 мм. Для устранения пористости освинцованные листы прокатывают между стальными валками. Часто применяют покрытия свинцовооловянистыми сплавами. Такое покрытие в отношении прочности сцепления и плa т fчнo-сти не уступает оловянному.  [c.202]

На воздухе оловянные покрытия по стали катодны и защищают от коррозии лишь при отсутствии в них пор. Олово устойчиво к Д011-ствию слабых растворов кислот и щелочей, а также к органическим кислотам, но разрушается в концентрированных растворах мпне-ральных кпслот и щелочей. Сероводород на олово почти не действует.  [c.567]

Кроме указанных металлов, в современной гальванотехнике разработаны условия осаждения редких металлов рения, галлия, таллия, а также таких металлов, как висмут, марганец и сурьма. Все эти металлы редко применяются в промышленности и используются главным образом при лабораторных исследованиях. Поэтому в настоящем справочнике приведены сведения об осажденин только сурь аы, имеющей некоторые перспективы использования ее для частичной замены оловянных покрытий под пайку, для покрытия печатных радиотехнических схем, для замены кадмия при защите стальных деталей от коррозии в морских условиях и для других отраслей машиностроения.  [c.186]

Химические соединения свинца с магнием не только малопластичны, но весьма коррозионнонестойки. Поэтому паяные швы, выполненные легкоплавкими оловянно-свинцовыми или свинцовыми припоями, обладают низкой коррозионной стойкостью. Интенсивная коррозия в паяных соединениях, выполненных такими припоями, развивается преимущественно между паяным швом и основным металлом даже через поры в покрытиях (табл. 91).  [c.305]

Осаждение прочих металлов. Кроме указанных металлов в современной гальванотехнике пр.чменяется осаждение иридия, рутения, рения, галлия и таллия, а также некоторых других, которые не относятся к категории редких, но и не входят в группу металлов, широко применяе.мых в качестве защитно-декоративных покрытий. К ним относятся висмут, марганец и сурьма. Все эти металлы редко применяются в промышленности и используются главным образом при лабораторных исследованиях. Поэтому в настоящем справочнике технология их осаждения не приводится. Исключение представляет сурьма, осаждение которой используется для частичной замены оловянных покрытий под пайку, для покрытия печатных радиотехнических схем, для замены кадмия в условиях морской коррозии и в других отраслях машиностроения. Сурьма—серебристо-белый металл с уд. весом 6,88 и температурой плавления 630,5° С.  [c.167]


Смотреть страницы где упоминается термин Покрытия, коррозия оловянные : [c.414]    [c.157]   
Коррозия и защита от коррозии (1966) -- [ c.608 ]



ПОИСК



Коррозия покрытий

Покрытие оловянные



© 2025 Mash-xxl.info Реклама на сайте