Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Механические характеристики материалов в зависимости от температуры

МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ МАТЕРИАЛОВ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ  [c.142]

Циклически изменяющиеся температуры существенно влияют на процессы ползучести, а следовательно, и на процессы разрушения материалов [13, 14,37, 38, 76, 83, 109, 112—119, 122, 126, 147— 151, 198, 199, 245—248, 255, 262—265, 275]. Причинами такого влияния являются температурные напряжения, которые могут возникать за счет неравномерного нагрева изменение механических характеристик материала в зависимости от изменения температуры и другие факторы. Рассмотрим основные законы ползучести и длительной прочности материалов при переменных температурах и напряжениях.  [c.350]


Средняя температура в зоне контакта Ту, оказывает значительное влияние на величину Характер изменения контактного термического сопротивления от температуры определяется совокупностью зависимостей физических и механических характеристик материалов контактных пар от температуры. В зависимости от свойств контактирующих материа.тов и условий контактирования повышение температуры в зоне контакта может вызвать как увеличение, так и уменьшение контактного термического сопротивления (рис, 12.5).  [c.325]

Марочник построен по принципу применения и содержит сведения о химическом составе, механических свойствах и твердости в зависимости от размера поковки (отливки или детали) и режимов термической обработки параметры ковочных, литейных свойств и обрабатываемости резанием характеристики свариваемости, флокеночувствительности, склонности к отпускной хрупкости, а также некоторые справочные данные по механическим свойствам в зависимости от температур отпуска, испытания и ковки, по пределу выносливости при отрицательных температурах, релаксационной стойкости, длительной прочности, ползучести, жаростойкости, коррозионной стойкости даются сведения о зарубежных материалах, близких по химическому составу к отечественным.  [c.13]

Большинство физико-механических параметров макромоделей конструкций РЭС могут быть полз ены только путем идентификации. В подсистеме может быть проведена идентификация параметров макромоделей типовых конструкций РЭС, позволяющая в определенной последовательности полз ить упругие и демпфирующие характеристики материалов конструкций в зависимости от температуры, а также коэффициенты жесткости креплений ПУ и дополнительные цилиндрические жесткости, вносимые ЭРИ в плоские конструкции, в зависимости от варианта установки ЭРИ, материала клея, площади корпуса ЭРИ, высоты и соотношения размеров корпуса. По результатам идентификации и обработки результатов в базу данных заносятся коэффициенты соответствующих полиномиальных зависимостей для определения перечисленных выше параметров.  [c.86]

Изложенные соображения были приняты во внимание при выборе комплекса физико-механических характеристик для описания свойств компаундов. Наиболее общую характеристику полимерных материалов дают термомеханические кривые [61]. На рис. 4 представлены эти кривые для трех марок эпоксидных компаундов, где относительная деформация е дается в зависимости от температуры Т. Термомеханические кривые показывают, что для полимерных компаундов четко прослеживаются два физических состояния стеклообразное и высокоэластическое. Граница между этими состояниями находится вблизи температуры стеклования. В работе [75] показано, что эта граница смещается при увеличении напряжения в область более низких температур. Так, при увеличении напряжения от 1000 до  [c.22]


В зависимости от вида нагружения (растяжение, сжатие, изгиб, кручение, срез) и условий воздействия (температура, скорость, периодичность и время приложения) материалы принято характеризовать различными мерами сопротивления их деформации и разрушению — характеристиками механических свойств.  [c.46]

Изменение в процессе нагружения модулей упрочнения, разупрочнения и коэффициента вязкости, их зависимость от скоростных и температурных условий нагружения позволяет объяснить эффекты, связанные с деформированием материалов при различных скоростях и температурах зависимость сопротивления материала деформации от режима нагружения [3], изменение коэффициентов вязкости близких по составу и механическим характеристикам материалов [146], и др. Однако пренебрежение отдельными видами процессов в материале, например процессами разупрочнения при высоких скоростях деформации или вязкой составляющей сопротивления при низких уровнях нагрузки, недопустимо без достаточной экспериментальной проверки.  [c.27]

Стадии и схемы накатывания. Накатывание — технологический процесс формирования резьбы на заготовке путем ее упругопластического деформирования специальным инструментом (роликами, плашками и т. п.). В зависимости от механических характеристик материалов заготовки и инструментов, а также энергетических возможностей оборудования накатывание можно проводить при нормальной или повышенной температуре, в условиях сверхпластичности и т. д. Как разновидность обработки металлов давлением накатывание резьбы характеризуется определенной зависимостью во времени перемещения материала заготовки (или радиальным внедрением витков-выступов инструмента в тело заготовки) под действием внешних сил. Таким образом, основными параметрами накатывания служат радиальное упругопластическое или остаточное перемещение витков инструмента в теле заготовки (или соответствующая ему радиальная нагрузка на заготовку при накатывании) и продолжительность процесса. Первый параметр является физическим, второй — технологическим.  [c.239]

Различный характер зависимостей от температуры теплофизических и механических характеристик материалов практически исключает возможность определения обобщенных характеристик на образцах из других материалов. Поэтому образцы конструкций должны изготавливаться из тех же материалов, что и элементы, по единому с ними технологическому процессу и должны иметь аналогичную структуру стенки. Важным является соблюдение одинаковых граничных условий в опорных устройствах, так как ряд КМ весьма чувствителен к концентрациям напряжений, возникающих вблизи них. Вопросы местной прочности для конструкций, выполненных из этих материалов, могут играть существенную роль.  [c.28]

Механические характеристики таких материалов в значительной мере зависят от температуры (рис. 3). Графики (см. рис. 3) необходимы для выбора температурного режима в зависимости от заданных деформаций.  [c.311]

Трансцендентное уравнение (7.195) по виду совпадает с уравнением (7.12), но параметры am в нем нужно вычислять с учетом зависимости механических характеристик материалов слоев от температуры. После определения собственных чисел частоты свободных колебаний, как и ранее, вычисляются по формуле  [c.448]

Предельные состояния, виды и критерии разрушения. Традиционные инженерные расчеты на прочность деталей машин и элементов конструкций при однократном нагружении основаны, с одной стороны, на номинальных напряжениях, определяемых по формулам сопротивления материалов, теории упругости и пластичности, теории пластин и оболочек и, с другой стороны, на характеристиках прочности материалов при однократном нагружении,, определяемых при стандартизированных или унифицированных испытаниях лабораторных образцов из применяемых конструкционных материалов [16]. В зависимости от большого числа конструктивных (вид нагружения, размеры и форма сечений, наличие концентрации напряжений), технологических (.механические свойства применяемых материалов, вид и режимы сварки, термообработки, упрочнения) и эксплуатационных (скорость нагружения, уровень нагрузок, температура, среда) факторов при однократном нагружении возможно возникновение трех основных видов разрушения — хрупкого, квазихрупкого и вязкого 16]. Каждый из этих видов разрушения существенно отличается по уровню номинальных и местных разрушающих напряжений и деформаций, скоростям развития трещин и времени живучести деталей с трещинами, внешнему виду поверхностей разрушения. Применительно к этим видам разрушения выбирают те или иные критерии разрушения из трех основных групп — силовых, деформационных и энергетических.  [c.9]


Жидкие смазочные материалы. Масла классифицируют по области применения (на индустриальные, автомобильные и др.) и сорта в зависимости от характеристик, определяемых совокупностью физико-механических свойств (плотности, вязкости, температуры вспышки и др.). В свою очередь, жидкие смазочные маге-риалы подразделяют на минеральные (масла, полученные на основе перегонки нефти) и синтетические.  [c.414]

В данном разделе проекта приводятся основные технические характеристики на принятые в проекте теплоизоляционные и вспомогательные материалы в полном соответствии с ГОСТ и утвержденными ТУ. В зависимости от вида теплоизоляционного материала в технических условиях указывается наименование материала, определение, область применения, внешний вид, форма и размер материала, объемный вес, коэффициент теплопроводности, предельная температура применения, механическая прочность, содержание влаги, водопоглощение и ссылка на соответствующий норматив. Приложенные к проекту технические условия на теплоизоляционные материалы являются руководящим материалом ири приемке материалов.  [c.9]

В зависимости от материала детали, типа напряженного состояния и характера изменения напряжений во времени в качестве предельного напряжения принимают одну из следующих механических характеристик материала предел текучести (физический или условный) при статическом нагружении детали из пластичного или хрупко-пластичного материала предел прочности при статическом нагружении детали из хрупкого материала предел выносливости при возникновении в детали напряжений, переменных во времени. Все сказанное, а также сведения, приведенные ниже, относятся к работе деталей при комнатной или слегка повышенной температуре общие понятия о механических характеристиках материалов при высоких температурах даны на стр. 21.  [c.10]

В нормативно-технической документации и в справочниках параметры изоляционных материалов обычно даются при 20—25° С. Фактически изоляция кабелей работает при 50—70° С. Поэтому необходимо знать, как будут изменяться механические и электрические характеристики в зависимости от рабочей температуры.  [c.114]

Впоследствии эта формула многократно подвергалась экспериментальной проверке для катков различных диаметров и материалов. В разных условиях проявлялась различная зависимость силы сопротивления от механических и геометрических характеристик взаимодействующих тел. Это связано с тем, что причины, вызывающие сопротивление перекатыванию, могут быть разными в зависимости от свойств материалов и условий взаимодействия, в частности от температуры тел.  [c.122]

Важным фактором, определяющим надежность соединения элементов металлоконструкций, является прочность и стабильность контактов между поверхностью металла и клея. Реальная прочность твердых тел на 2—3 порядка ниже рассчитанной теоретически по силам взаимодействия между частицами тел. Это объясняется наличием микротрещин, представляющих собой начальные дефекты, возникающие в материале в результате тепловых, механических и других воздействий. Трещины могут возникнуть также на включениях или неоднородностях, обладающих отличными от основного материала механическими свойствами. В клеевых соединениях свойства компонентов существенно различны, поэтому условия для образования дефектов особенно благоприятны из-за напряжений на границе раздела фаз, возникающих при формировании и эксплуатации системы. Эти напряжения увеличиваются из-за различия деформационных характеристик компонентов при действии температуры, влажности, внешних нагрузок. Развитие трещин в зависимости от соотношения скоростей разрушения и релаксации напряжений может происходить с  [c.480]

Процесс деформирования малоуглеродистой стали в интервале температур О—20° С и скоростей деформирования 0—0,25% в секунду практически стабильный. При более высоких температурах и скоростях деформирования начинают изменяться механические характеристики, а при температурах около 400° С начинает отчетливо проявляться зависимость деформации от времени действия нагрузки. Для многих материалов такая зависимость оказывается существенной и при комнатной температуре (например, для пластмассы).  [c.96]

Эти коэффициенты, также как и упругие характеристики стеклопластиков, существенно зависят от температуры. Кроме того, при достаточно высоких температурах стеклопластики должны рассматмваться уже не как упругие, а как упруго-вязкие материалы. Особое внимание следует обратить на изменение характера анизотропии всех физико-механических характеристик стеклопластиков в зависимости от температуры, что в частности должно найти отражение в законах деформирования этих материалов.  [c.8]

На основе представлений о композиционном материале, состоящем из хрупкого науглероженного слоя и вязкой матрицы, предложена [127] модель для расчета вязкого разрушения материала. Имея расчетный профиль распределения углерода и экспериментально найденную глубину трещины, можно оценить концентрацию углерода на границе хрупкого слоя. Каждой температуре соответствует своя концентрация углерода на границе хрупкого слоя. Механические свойства прогнозируются в зависимости от температуры, выдержки, толщины детали, активности углерода и других характеристик среды.  [c.194]

Содержит около 600 марок сталей и сплавов чёрных металлов. Для каждой марки указаны назначение, химический состав, механические свойства в зависимости от состояния поставки, температуры, режимов термообработки, поперечного сечения заготовок, места и направления вырезки образца, описан комплекс технологических свойств. Приведены системы маркировки сталей по Евронормам и национальным стандартам. В приложениях даны физические свойства механические свойства в зависимости от температур отпуска, испытания, ковочных жаропрочные свойства марки, характеристики и области применения электротехнических и транспортных сталей зарубежные материалы, близкие по химическому составу к отечественным перевод твёрдости по Бринеллю, Роквеллу, Виккерсу и Шору соответствие различных шкал температур.  [c.4]


Для новых материалов определяются следующие характеристики механических свойств в пределах температур, для которых рекомендуется этот материал временное сопротивление разрыву (предел прочности), предел текучести, относительное удлинение, относительное сужение, относительное равномерное сужение, ползучесть, длительная прочность, циклическая прочность (для циклически нагруженных элементов), критическая температура хрупкости (по данным испытаний образцов типа IV по ГОСТ 6996—66 и ГОСТ 9454—60), сдвиг критической температуры хрупкости в результате старения и циклической усталости, длительная пластичность. Номенклатура и объемы определения указанных характеристик устанавливаются для каждого материала в зависимости от рекомендуемых температур и условий его эксплуатации. Механические свойства, определяемые первыми четырьмя из иеречясленных характеристик (ов, рабочую температуру. Ударная вязкость должна быть исследована в интервале от критической температуры хрупкости материала до температуры, указанной выше.  [c.24]

Жаропрочные металлокерамические материалы, а также различные огнеупорные материалы, предназначенные для работы в качестве элементов современных машин, как известно, изготавливаются часто сразу в виде готовых деталей, требующих небольшой последуюш ей механической обработки. Такие материалы обладают большой неоднородностью физических свойств как по объему, так и в различных образцах одной партии и тем более в разных партиях. Свойства материалов вследствие особенностей их изготовления могут изменяться в зависимости от их геометрии и размеров. При поисковых исследованиях по созданию материалов принципиально новых классов, предназначенных для работы в условиях высоких скоростей газового потока и температур, часто необходимо дать оценку теплофизических характеристик конкретной детали или упрощенных образцов с подобной технологией изготовления. Иногда необходи.мо дать эту оценку при испытаниях деталей непосредственно на испытательных стендах, где изучаются одновременно такие свойства, как эрозия, окисляемость, устойчивость к термическим напряжениям и т. д.  [c.70]

Существенное влияние на закономерности сопротивления стабильному развитию усталостных трещин, в конечном счете определяющих длительность периода их роста до критического размера, оказывают конструкционные (размеры, концентраторы напряжений), экс11луата-ционные (температура, частота нагружения, среда, режимы циклического нагружения) и технологические (термообработка, сварка и др.) факторы. Однако, несмотря на большое количество известных в литературе подходов для прогнозирования скорости роста усталостных трещин в зависимости от режимов циклического нагружения и характеристик механических свойств исследуемых материалов, ни одно предложенное уравнение не позволяет с достаточной точностью производить расчетную оценку влияния указанных факторов на сопротивление развитию усталостных трещин. Поэтому в настоящее время для получения характеристик трещиностойкости материалов и конструктивных элементов при конкретных условиях их изготовления и эксплуатации необходимы экспериментальные исследования. Это требует разработки методик, позволяющих имитировать воздействие конструкционных, эксплуатационных и технологических факторов на материалы при испытаниях их в лабораторных условиях.  [c.131]

Предложенная модель разрушения конструкционных сплавов с трещиной при циклическом нагружении учитывает влияние на вязкость разрушения изменения характеристик механических свойств материалов в пластически деформируемой зоне у вершины трещины при циклическом нагружении и класса материала (циклически разу-прочняющийся, упрочняющийся, стабильный). Для количественной оценки вязкости разрушзния необходимо знать закономерности изменения параметров диаграмм циклического деформирования (ширины петли пластического гистерезиса), циклического предела пропорциональности, циклического предела текучести, показателя деформационного упрочнения (в зависимости от режимов нагружения, класса материала и условий испытаний, например температуры), которые определяются при циклическом нагружении гладких образцов.  [c.221]

Таблица "Материал - Код" является основной в нашем банке данных. Здесь каждому материалу присвоен уникальный индекс, дано его описание. Ключевым является поле "Код". При необходимости (в соответствии с наложенными отношениями) можно идентифицировать данные по выбранному материалу, например, с таблицей "Источник", где хранится вся информация об авторах, названии статьи, рецензии и т.д. Данные по размерам испытываемых образцов разделены на отдельные таблицы по геометрическим формам прямоугольные, цилиндрические, конусные и т.д. Возможность использования механизма OLE (Obje t Linking and Embedding - Связывание и Внедрение Объектов) позволяет хранить и использовать в работе фотографии и чертежи образцов, испытательных установок и устройств, полученных фафиков и гистограмм. В качестве базовых механических характеристик взяты такие параметры, как предел прочности а , предел текучести Oj, прочность на разрыв S , относительные сужение v(/ и удлинение S. Они хранятся в таблице "Механические свойства". Кроме того, согласно ГОСТ 9454-78, в зависимости от жесткости напряженного состояния и скорости деформации выбираются три вида ударной вязкости K V, КСи и КСТ. В системе предусмотрена также возможность классифицировать испытания по виду и режиму нагружения, по температуре проведения экспериментальных исследовании. Как обязательный параметр введена таблица "Химические свойства", где данные приведены либо по химическим элементам отдельно, либо берутся из соответствующих ГОСТов. Загрузка информационных массивов является оче гь важным и ответственным этапом автоматизации исследований. В качестве первоисточников служат любые публикации, содержащие фактографические сведения о физико-механических (химических) свойствах материалов. Это могут быть научные статьи, монографии, справочники, ГОСТы и др. Таблица "Материал - Код" является основной в нашем банке данных. Здесь каждому материалу присвоен уникальный индекс, дано его описание. Ключевым является поле "Код". При необходимости (в соответствии с наложенными отношениями) можно идентифицировать данные по выбранному материалу, например, с таблицей "Источник", где хранится вся информация об авторах, названии статьи, рецензии и т.д. Данные по размерам испытываемых образцов разделены на отдельные таблицы по <a href="/info/161520">геометрическим формам</a> прямоугольные, цилиндрические, конусные и т.д. <a href="/info/544815">Возможность использования</a> механизма OLE (Obje t Linking and Embedding - Связывание и <a href="/info/559169">Внедрение Объектов</a>) позволяет хранить и использовать в <a href="/info/311553">работе фотографии</a> и чертежи образцов, испытательных установок и устройств, полученных фафиков и гистограмм. В качестве базовых <a href="/info/7719">механических характеристик</a> взяты такие параметры, как <a href="/info/1682">предел прочности</a> а , <a href="/info/1680">предел текучести</a> Oj, прочность на разрыв S , <a href="/info/33914">относительные сужение</a> v(/ и удлинение S. Они хранятся в таблице "Механические свойства". Кроме того, согласно ГОСТ 9454-78, в зависимости от жесткости <a href="/info/183899">напряженного состояния</a> и <a href="/info/420">скорости деформации</a> выбираются три вида <a href="/info/4821">ударной вязкости</a> K V, КСи и КСТ. В системе предусмотрена также возможность классифицировать испытания по виду и режиму нагружения, по температуре проведения <a href="/info/5792">экспериментальных исследовании</a>. Как обязательный параметр введена таблица "Химические свойства", где данные приведены либо по <a href="/info/64561">химическим элементам</a> отдельно, либо берутся из соответствующих ГОСТов. Загрузка информационных массивов является оче гь важным и ответственным этапом автоматизации исследований. В качестве первоисточников служат любые публикации, содержащие фактографические сведения о <a href="/info/430754">физико-механических</a> (химических) свойствах материалов. Это могут быть научные статьи, монографии, справочники, ГОСТы и др.
При пропитке происходит заполнение пор волокнистых материалов пропитывающим электроизоляционным составом, в результате чего заиедляется процесс поглощения влаги, резко повышаются электрическая прочность и теплопроводность и, в некоторой степени, механические характеристики. Кроме того, пропитка волокнистых материалов из натуральных и некоторых синтетических органических волокон повышает их нагревостойкость, так как образующаяся в результате пропитки лаковая пленка препятствует доступу к волокнистому материалу кислорода воздуха и замедляет процессы термоокислительной деструкции. В зависимости от природы волокнистой основы и типа пропитывающего состава максимальная длительная рабочая температура пропитанных волокнистых материалов колеблется от 105 до 180 °С. Кратковременно некоторые из них могут работать при 200 °С и выше.  [c.271]


Специфика процесса электрохимической размерной обработки определяет особенности качества обработанной поверхности. Формирование микрорельефа поверхности при ЭХО в отличие от резания в значительной мере определяется при этом химическим составом и структурой обрабатываемого материала, химическим составом, температурой и скоростью движения электролита. Силовой и тепловой факторы практически не участвуют в образовании поверхностного слоя (при отсутствии коротких замыканий, гидравлических ударов и других нарушений процесса ЭХО). Поверхностный слой создается в результате электрохимического растворения материала и химического воздействия среды. Шероховатость обработанной поверхности, являющаяся наиболее важной геометрической характеристикой циклической прочности, в зависимости от условий ЭХО изменяется в широком диапазоне от Кг == 10- 40 мкм до Яг. = 0,02- 0,16 мкм (ГОСТ 2789—73),. Для большинства конструкционных материалов при ЭХО в опти-малъном режиме получить шероховатость в пределах Яа = 0,32 4-2,5 мкм не представляет технологических трудностей [210]. Таким образом, шероховатость поверхности ЭХО не только не уступает основным чистовым методам механической обработки, но и некоторые из них превосходит.  [c.66]

Все изложенное позволяет сделать вывод о том, что усталостному разрушению всегда предшествует локальная пластическая деформация, которая по мере накопления числа циклов приводит к разрыхлению, нарушениям сплошности, затем к возникновению микротрещин и развитию некоторых из них в макроскопические. Траектория микроскопической трещины усталости определяется ходом линий сдвигов и расположением влючений в структуре. Между однократной пластической деформацией и сдвигами при усталости имеется много общего одни и те же кристаллографические системы скольжения, качественно сходная зависимость от температуры, скорости и других факторов. В то же время усталостная деформация и разрушение, несомненно, имеют специфические особенности, которые пока не позволили свести этот вид разрушения к обычным при однократных нагружениях и установить устойчивую связь между механическими характеристиками, такими, как (То,2, Ов, и т. д., и характеристиками усталости. Важным практическим следствием из установленного раннего начала усталостного разрушения для большинства реальных условий нагружения является необходимость оценивать материалы не только по характеристикам полного разрушения, но и по начальному разрушению, обнаруживаемому иногда уже после 5—10% от общего числа циклов [5, 6].  [c.203]

Так как полимеры этого типа содержат свободные реактивные группы, при нагревании и на холоде при взаимодействии с отвер-дителями (гексаметилендиамин, меламин и др.) их можно превращать в полимеры, имеющие пространственную структуру. Условия процесса и соотношение реагентов резко влияют на молекулярный вес (500—5000) и физико-механические свойства получаемого полимера. В зависимости от молекулярного веса смолы могут быть твердые и жидкие (ЭД-5, ЭД-6, ЭД-13 и др.). Эпоксидные смолы, отвержденные мочевинно-фенолформаль-дегидными смолами и аминами, используют для получения различных материалов, обладающих высокими эксплуатационными характеристиками на воздухе и в агрессивных средах при нормальной температуре, а модифицированные жирными или смоляными кислотами используют для покрытия полов, изготовления грунтовок, футеровочных составов и т. п.  [c.247]

Механически е характеристики таких материалов в значительНЬй степени зависят от температуры. На фиг. И и 12 показаны деформационные кривые для органического стекла и винипласта при различных температурах, на основании которых в реальных условиях производства в ряде случаев можно выбрать в зависимости от требующихся деформаций температурные условия процесса.  [c.16]

Правильность подбора пары трения в особо ответствеипых случаях проверяют непосредственно в натурных условиях. Так как этот путь обычно очень долог, то часто можно ограничиваться снятием кривой фрикционной теплостойкости [52], т. е. получением зависимости коэффициента тренпя и износа от температуры. Для коэффициента тренпя эту кривую надо снять прп трех достаточно отличных давлеппях. Располагая этими данными, можно находить значения коэффициента трения для заданных условий интерполированием. Наиболее прост, но пока наименее надежен прпкидочпый расчет коэффициента тренпя по физико-механическим характеристикам материалов, производимый по формулам (18), (19). Как следует пз условий осуществления внещнего трения, первый член этого уравненпя не может быть для металлов более  [c.23]

Другую группу факторов процесса намотки, влияющих на свойства композита в конструкции изделия, составляют параметры отверждения (полимеризации) Полимерного связующего. Уровень температуры отверждения обычно выбирается в зависимости от типа применяемого связующего таким образом, чтобы обеспечить заданные требования по физико-механическим характеристикам отвержденной матрицы в композите, с одной стороны, с другой — закон изменения температуры в процессе нагрева и охлаждения должен учитывать конкретные условия, вытекающие из разнородности коэффициентов линейного термического расширения материалов заготовки изделия, ее геометрии, теплопроводности применяемой с рмообразующей оснастки, интенсивности теплопритока нагревательных устройств. Вместе с этим технологические режимы отверждения должны обеспечивать бездефектную структуру материала в конструкции с наименьшими затратами энергетических ресурсов.  [c.48]

Механическая прочность асбестовых волокон не велика предел прочности при растяжении составляет 300— 400 кПсм . Вследствие этого при производстве асбестовых бумаг, лент и тканей, обычно добавляется определенное количество органических волокон, что приводит к снижению механической прочности при высокой температуре за счет выгорания органической части. Тем не менее асбестовые материалы по нагревостойкости относятся к классу С. Электроизоляционная асбестовая бумага выпускается сейчас толщиной 0,2 0,3 0,4 0,5 0,8 и 1,0 мм с минимальным пробивным напряжением в отдельных точках от 0,9 до 2,4 кв в зависимости от толщины. Может изготовляться и более тонкая бумага с повышенными электрическими характеристиками, по сравнению со стандартной, за счет лучшей очистки волокна, без введения органических волокон.  [c.128]

Различные обрабатываемые материалы, обладающие различными механическими и теплофизическими характеристиками, имеют различную склонность к адгезии, диффузии, наклепу и наростооб-разовакию, обладают различной вибровозбуждаемостью и дают различную степень изменения температуры резания в зависимости от подачи. Все это, безусловно, будет сказываться на характере зависимости Ao.n=/(s), как результат одновременного действия многих факторов.  [c.105]

Благодаря малой устойчивости к действию как повышенных, так и пониженных температур и малой стойкости к растворителям чистый каучук для изготовления электрической изоляции и других технических целей не применяют. Для устранения отмеченных недостатков каучук подвергают так называемой вулканизации, т. е. нагреву с добавкой серы, придающей каучуку свойство термореактивности, а такл<е наполнителей (мел, тальк и пр. в порошке), красителей и других веществ. При вулканизации каучук, соединяясь с серой, приобретает повышенную нагревостойкость и морозостойкость при благоприятных механических характеристиках, В зависимости от количества взятой в составе смеси серы получаются различные продукты при 3—10% серы — мягкая резина, обладающая еще очень высокой растяжимостью и упругостью, а при 20—50% серы — твердая резина или эбонит, который уже является более твердым материалом, но все же обладает очень хорошей стойкостью по отношению к ударным нагрузкам (высокой удельной ударной вязкостью).  [c.161]

В сопротивлении материалов в основ-Hft i изучаются медленно изменяющиеся пли статические нагрузки Зто позволяет легко получить зависимость механических характеристик материала от температуры, Так, ка рис, 5.15 показана зависимость от температуры величии . ст , От[. и Ь для малоутлеродистых сталей е ин-тероале 0..,500 С. На кривой зависимости Ь = 1(/) лля малоуглеродистой стали заметен участок, когда удлинение образца при разрыве с повышением температуры уменьшается, а при дальнейшем повышении температуры пластические свойства стали восстанавливаются при палении прочностных показателей. Это явление называется охрупчиванием. В легированных сталях это явление ие наблюдается.  [c.47]

Материал, из которого изготовляют контакты-де-тали, должен обладать хорошей тепло- и электропроводностью, быть устойчивым против коррозии, иметь токопроводящую окисиую пленку, высокую температуру плавления и испарения должен быть твердым, механически прочным и в то же время легко поддаваться механической обработке, иметь невысокую стоимость. Материалы контактов выбираются в зависимости от условий работы контактов в электрической цепи, специфических параметров работы (частота срабатывания, допустимая величина контактного нажатия и т. п.) и условий эксплуатации. Для неподвижного контактного соединения применяют медь, алюминии и сталь. Для коммутирующих маломощных контактов, коммутируемая мощность которых меньше 100 Вт (токи меньше 0,2—0,5 А), применяют серебро, снлавы серебра с никелем, золото и золотые сплавы (ГОСТ 6835—72), платину и платиновые сплавы (ГОСТ 13498—68), палладий и палладиевые сплавы (ГОСТ 13462—68) и другие. Характеристики контактных материалов указаны в книгах [35] и [47] и ГОСТ 14312—69, конструкции и размеры контактов-деталей из благородных металлов — в ГОСТ 21392—76, основиыг-параметры коммутационных изделий — в ГОСТ 17464—72.  [c.212]


Для изготовления высокочастотных высоковольтных изоляторов применяют стеатитовую керамику, так как фарфор имеет сильную. зависимость электрических характеристик от температуры из-за наличия большого количества полевошпатового стекла с повы-1иенной электропроводностью. Стеатитовая керамика изготовляется на основе-тальковых минералов, основной кристаллической фазой которых является метасиликат магния MgO-SiOj. Стеатитовые материалы характеризуются высокими значениями р, в том числе при высокой температуре, малым tg б, за исключением материала группы 210 ГОСТ 20419—83, предназначенного для производства крупных высоковольтных изоляторов. Стеатитовая керамика характеризуется высокими механическими свойствами, стабильно-  [c.240]

Таким образом, анализируя рассмотренные выше экспериментальные данные по малоцикловому деформированию при мягком режиме нагружения с временными выдержками на экстремумах нагрузки (см. рис. 4.8—4.10), можно видеть, что как температура испытаний, так и форма цикла накладывают свои особенности на кинетику деформаций в этих условиях. В общем случае для комнатной и умеренных температур кинетика ширины петли пластического гистерезиса и односторонне накопленной в циклах деформации ё > описывается зависимостями (2.10) и (2.18). Причем для циклически упрочняющихся материалов в двойных логарифмических координатах, что соответствует степенному виду кинетической функции, они представляют собой прямые ниспадающие линии (рис. 2.3, в), а для циклически разупрочняющихся материалов в полулогарифмических координатах — прямые восходящие линии (рис. 2.3, а), отвечающие экспоненциальному виду этих зависимостей. Как показывают приведенные выше экспериментальные данные для высоких температур и сложной формы цикла нагружения, в этих условиях наблюдается более сложный характер поведения деформационных характеристик. Так, уже при 450 С сталь Х18Н10Т обнаруживает в исходных циклах некоторое упрочнение, переходящее затем на основной стадии процесса деформирования в циклическое разупрочнение, причем это характерно как для нагружения с треугольной, так и с трапецеидальной формами цикла. Если при t = 450° С степень разупрочнения еще невелика, то с повышением температуры до 650° С, когда начинается интенсивное проявление в материале температурно-временных эффектов, кинетика деформаций становится ярко выраженной и в существенной степени зависящей от времени, формы цикла и уровня нагружения. Указанные обстоятельства не учитываются зависимостями (2.10), (2.18) и для их описания было предложено [13] связать параметры этих уравнений с механическими свойствами материалов, а последние рассматривать зависящими от температуры и времени нагружения.  [c.79]


Смотреть страницы где упоминается термин Механические характеристики материалов в зависимости от температуры : [c.191]    [c.179]    [c.404]    [c.549]    [c.286]    [c.123]    [c.68]    [c.413]   
Смотреть главы в:

Конструкционные пластмассы  -> Механические характеристики материалов в зависимости от температуры



ПОИСК



19 — Зависимость от механических

Зависимость от температуры

Материал характеристики механические

Материалы — Характеристики

Механическая характеристика

Характеристики материалов температуры



© 2025 Mash-xxl.info Реклама на сайте