Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения движения жидкости в пограничном слое

Дифференциальные уравнения движения жидкости в пограничном слое  [c.253]

Ламинарное движение жидкости в пограничном слое описывается дифференциальными уравнениями Прандтля (для несжимаемой жидкости), полученными из общих уравнений Навье — Стокса (1-79)  [c.64]

В настоящее время имеется достаточно большое число работ, посвященных изучению движения электропроводящей жидкости в пограничных слоях, образующихся на электродах или на непроводящих стенках различных магнитогидродинамических устройств. Однако методы решений уравнений пограничного слоя в этих работах основываются на упрощающих предположениях, позволяющих свести задачу к решению системы обыкновенных дифференциальных уравнений. Так, в работе [1] на течение накладывается специальное магнитное поле Н 1/ д/ж, что позволяет свести задачу к автомодельной. В работах [2-4] решение либо ищется в виде разложений по ж, либо предполагается, что задача локально автомодельна. В настоящей работе строится решение уравнений магнитогидродинамического пограничного слоя с помощью одного из численных методов, который уже давно применяется при решении уравнений пограничного слоя для непроводящей жидкости.  [c.686]


Таким образом, жидкость вне пограничного слоя и следа можно рассматривать как идеальную и ее движение изучать с помощью уравнений Эйлера. Внутри же пограничного слоя жидкость следует рассматривать как вязкую и изучать ее движение с помощью дифференциальных уравнений движения вязкой жидкости. В следующем параграфе будет показано, что благодаря малой толщине пограничного слоя дифференциальные уравнения движения вязкой жидкости значительно упрощаются.  [c.240]

Следует отметить, что дифференциальные уравнения пограничного слоя в форме (10.3) и (Ю. 4) пригодны лишь для изучения ламинарного движения в пограничном слое. Для изучения турбулентного движения в пограничном слое они неприменимы по тем же причинам, по каким уравнения движения вязкой жидкости неприменимы для изучения турбулентного движения.  [c.246]

При учете действия сил инерции в паровой пленке и касательных напряжений на границе ее с жидкостью наряду со слоем пара (рис. 13-19) рассматривается пограничный слой жидкости. Поэтому исходная система дифференциальных уравнений энергии и движения. для паровой пленки дополняется аналогичной системой уравнений для пограничного слоя жидкости. При этом граничное условие для поверхности раздела паровой и жидкой фаз принимает вид  [c.320]

Дифференциальные уравнения, выведенные для пограничного слоя вблизи твёрдой стенки, нашли своё применение и в изучении распространения движения от струи, втекающей в полубесконечное пространство, заполненное той же жидкостью, но находящейся на бесконечности в состоянии покоя. Если при обтекании твёрдой границы происходит распространение торможения от стенки внутрь потока благодаря вязкости, то при втекании струи в безграничную жидкость происходит распространение уже самого движения благодаря той же вязкости жидкости. Такое сходство явлений и обусловливает возможность использования одних и тех же дифференциальных уравнений.  [c.282]

В связи с эти.м приобретают большое значение приближенные методы решения задач пограничного слоя, среди которых распространенными являются методы, основанные на использовании уравнений пограничного слоя в интегральной форме. К таким уравнениям относятся уравнение количества движения, уравнение кинетической энергии, уравнение энергии. Приближенность этих методов заключается в отказе от удовлетворения дифференциальных уравнений пограничного слоя для каждой отдельной частицы жидкости. Уравнения пограничного слоя удовлетворяются только в среднем по толщине пограничного слоя ери выполнении граничных условий и контурных связей на стенке и при переходе к внешнему потоку. С точки зрения инженерной практики такой подход оправдывается тем, что часто прп проектировании различных технических устройств нет необходимости в детальном знании профилей скорости и температуры достаточно иметь данные о распределении коэффициентов трения и теплообмена по обтекаемой поверхности или о распределении толщины пограничного слоя и интегральных его характеристик.  [c.52]


Закончив на этом описание основных физических явлений, возникающих при течениях с очень малой вязкостью, и изложив тем самым в самых кратких чертах теорию пограничного слоя, мы перейдем в следующих главах к построению рациональной теории этих явлений на основе уравнений движения вязкой жидкости. В настоящей части книги (в главе III) мы составим общие уравнения движения Навье — Стокса, а во второй части сначала выведем из уравнений Навье — Стокса путем упрощений, вытекающих из предположения о малой величине вязкости, уравнения Прандтля для пограничного слоя, а затем перейдем к интегрированию этих уравнений для ламинарного пограничного слоя. Далее, в третьей части книги, мы рассмотрим проблему возникновения турбулентности (переход от ламинарного течения к турбулентному) с точки зрений теории устойчивости ламинарного течения. Наконец, в четвертой части книги мы изложим теорию пограничного слоя для вполне развившегося турбулентного течения. Теорию ламинарного пограничного слоя можно построить чисто дедуктивным путем, исходя из дифференциальных уравнений Навье — Стокса для движения вязкой жидкости. Для теории турбулентного пограничного слоя такое дедуктивное построение до сегодняшнего дня невозможно, так как механизм турбулентного течения вследствие его большой сложности недоступен чисто теоретическому исследованию. В связи с этим при изучении турбулентных течений приходится в широкой мере опираться на экспериментальные результаты, и поэтому теория турбулентного пограничного слоя является, вообще говоря, полуэмпирической.  [c.53]

В настоящее время с расчетами пограничного слоя в сжимаемых газах и несжимаемых жидкостях при наличии ионизации, абляции и химических реакций имеют дело конструкторы кораблей, самолетов, ракет и многих других машин и аппаратов, в которых существует движение жидкостей. Общее количество статей, посвященных исследованию пограничного слоя, исчисляется тысячами. Таким образом, пограничный слой, наверное, существует и известно его дифференциальное уравнение. Однако до тех пор никому не удалось строго доказать существование этого слоя из уравнений Навье—Стокса. Поэтому упомянутое уравнение ниже выводится двумя приближенными методами методом оценки порядка отдельных членов уравнения Навье—Стокса и методом масштабных преобразований.  [c.256]

В табл. 15.1 сравниваются результаты приближенного расчета ламинарного пограничного слоя несжимаемой жидкости на плоской стенке с использованием интегрального уравнения количества движения с точным решением дифференциальных уравнений. Можно считать, что точность приближенных решений достаточна для практических целей.  [c.286]

КОСТИ как нормальная, так и тангенциальная компоненты скорости на поверхности тела должны обратиться в нуль. Последнее условие называется условием прилипания, потому что любая незначительная вязкость заставляет жидкость прилипать к телу. Если вязкость обращается в нуль, то уравнение для функции тока приводится к уравнению третьего порядка (п. 2.2.2) и, следовательно, не может удовлетворить всем граничным условиям. Поскольку невязкая жидкость может проскальзывать, то условие прилипания опускается, и в результате решение будет представлять движение жидкости всюду, кроме малой области вблизи тела, называемой пограничным слоем Прандтля. В этой области тангенциальные компоненты скорости изменяются очень сильно от значения, полученного из предельного уравнения (с вязкостью, равной нулю), до нуля, чтобы удовлетворить краевому условию прилипания, которое ранее было опущено. Для описания течения в этой области Прандтль увеличил ее, введя преобразование растяжения, оценил порядок величины различных членов исходного дифференциального уравнения и отбросил малые члены. Полученные таким образом уравнения были решены, и их решения были сращены с решением задачи для невязкой жидкости с использованием условия сращивания (4.1.16).  [c.128]


Одними из первых представления о попраничном слое высказали знаменитые русские ученые Д. И. Менделеев в монографии О сопротивлении жидкостей и воздухоплавании (1880 г.) и И. Е. Жуковский в работе О форме судов (1890 г.) и в более поздних лекциях. Известный немецкий ученый Л. Прандтль в 1904 г. получил дифференциальные уравнения движения жидкости в пограничном слое, которые лежат в основе современной теории пограничного слоя. Впервые эти уравнения были решены Блазиу-сом в 1907 г. для простейших случаев пластины и круглого цилиндра. На этой основе, усилиями многих ученых мира, была создана современная теория пограничного слоя, которая бурно развивается и поныне. Большой вклад в эту теорию внесли советские ученые Г. Н. Абрамович, В. С. Авдуерский, А. А. Дородницин,  [c.20]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]

Таким образом, задача изучения движения вязкой несжимаемой жидкости в пограничном слое сводится математически к решению дифференциальных уравнений (1.13) при граничных условиях (1.14) и (1.15). Наличие нелинейных слагаемых в первом уравнении (1.13) и наличие граничных условий на неизвестной границе создают большие трудности на пути изучения движения жидкости в пределах пограничного слоя. Но всё же эти трудности оказалось возможным преодолеть во многих случаях с помощью различных приближённых методов.  [c.257]

Основные дифференциальные уравнения движения вязкой жидкости в пограничном слое были даны в 1904 г. Л. Прандтлем. Дальнейшее развитие теория пограничного слоя получила в работах зарубежных ученых Блазиуса, Хименца, Польгаузена, Карма-  [c.240]

Не делая каких-либо предположений о длине гидродинамического начального участка, определим прежде всего распределение скорости при полностью развитом ламинарном течении жидкости с постоянной вязкостью. В качестве исходного уравнения используем дифференциальное уравнение движения пограничного слоя при осесимметричном течении в круглой трубе (4-11). Очевидно, что при развитом профиле скорости Ur=0, (ди1дх)=0, и уравнение (4-11) упрощается  [c.76]

Задачи вязкого течения жидкостей и газов в пограничном слое при внешнем обтекании тел. Этот класс объединяет все задачи ламинарного и турбулентного, стационарного и нестационарного режимов течения однородных и миогокомионентных газов и жидкостей при свободном и вынужденном обтекании плоских и пространственных тел с произвольным распределением скоростей в потенциальном или завихренном потоке при произвольных условиях на границах и на поверхностях разрывов, Задачи данного класса описываются системой дифференциальных уравнений параболического типа, содержащей по крайней мере одну одностороннюю пространственную или временную координату, вдоль которой протекающий процесс зависит только от условий на одной из границ рассматриваемой области. Например, для задач теплообмена при неустановившемся ламинарном или турбулентном двумерном движении однородного газа система, состоящая из уравнений неразрывности движения и энергии, имеет вид  [c.184]

Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке суп] ествуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпириче-ские методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины.  [c.338]


Получим уравнение подобия для теплоотдачи при свободном движении жидкости. Метод подобия используем в упрощенной форме, не проводя детального анализа системы дифференциальных уравнений конвективного теплообмена (см. 49, 50). При этом будем полагать, что движение среды в области динамического пограничного слоя осуществляется под действием двух сил архимедовой (движущая сила) и силы вязкого трения (сила сопротивления). Силами инерции пренебрегаем.  [c.394]

Дифференциальные уравнения пограничного слоя проще общих уравнений динамики вязкой жидкости. Однако и их решение связано с большими математическими трудностями даже при ламинарном пограничном слое на телах простейших контуров. Точное решение уравнений ла>шнарного слоя возможно лишь в ограниченных случаях изменения скорости внешнего потока а направлении движения или при использовании ряда упрощающих предпосылок.  [c.28]

Полный расчет пограничного слоя для заданного тела путем решения дифференциальных уравнений требует во многих случаях столь обширной вычи лIiтeльнoй работы, что может быть выполнен только на электронных вычислительных машинах. Это особенно ясно будет видно из примеров которые будут рассмотрены в главе IX (см., в частности, 11). Поэтому в тех случаях, когда точное решение уравнений пограничного слоя невозможно при умеренной затрате времени, возникает необходимость применения приближенных способов, и притом иногда даже таких, которые оставляют желать лучшего в смысле точности. Для получения приближенных способов необходимо отказаться от требования, чтобы дифференциальные уравнения пограничного слоя удовлетворялись для каждой частицы жидкости, и ограничиться, во-первых, выполнением граничных условий и контурных связей на стенке и при переходе к внешнему течению и, во-вторых, выполнением только суммарного соотношения, получаемого из дифференциальных уравнений пограничного слоя как некоторое среднее по толщине слоя. Такое среднее дает уравнение импульсов, получающееся из уравнения движения посредством интегрирования по толщине пограничного слоя. В дальнейшем, излагая приближенные способы решения уравнений пограничного слоя, мы неоднократно будем пользоваться уравнением импульсов, которое часто называется также интегральным соотношением Кармана [ ].  [c.152]

На первый взгляд можно подумать, что турбулентный пограничный слой на пластине или на любом другом теле можно рассчитать на основании уравнений движения (19.3а) и (19.36) так же, как ламинарный пограничный слой, с той только разницей, что учет сил трения необходимо производить одним из способов, указанных в главе XIX. Однако до настоящего времени такой расчет турбулентного пограничного слоя выполнить невозможно, так как пока мы не знаем, во-первых, характера смыкания турбулентного пограничного слоя с ламинарным подслоем, всегда существующим в непосредственной близости от стенки, и, во-вторых, закона трения в этой переходной области. В этом отношении в более выгодном положении находятся задачи связанные со свободной турбулентностью (глава XXIV), т. е. с такими турбулентными течениями, которые не ограничены какими-либо стенками. Примерами свободной турбулентности могут служить смешение струи с окружающей ее неподвижной жидкостью или размыв следа позади тела. Такого рода чисто турбулентные течения могут быть рассчитаны на основе дифференциальных уравнений в сочетании с эмпирическими законами турбулентного трения. В задачах же, связанных с турбулентным пограничным слоем, интегрирование уравнений движения весьма затруднительно поэтому для расчета турбулентного пограничного слоя пока приходится прибегать главным образом к приближенным методам, сходным с приближенными методами, разработанными для расчета ламинарного пограничного слоя. Приближенные методы для расчета турбулентного пограничного слоя также основаны в первую очередь на теореме импульсов, с успехом используемой для расчета ламинарного пограничного слоя.  [c.571]

Будем теперь считать, что число Рейнольдса Ке потока очень велико. В таком случае нелинейные инерционные члены уравнений (1.6) будут существенно превосходить по величине члены, содержащие коэффициент вязкост]а, так что на первый взгляд может показаться, что влиянием вязкости здесь можно попросту пренебречь. На самом деле, однако, дело будет обстоять не совсем так отбрасывая члены с V в уравнениях 1.6), мы тем самым понижаем порядок этих дифференциальных уравнений, и решения получающихся упрощенных уравнений идеальной жидкости йе могут уже удовлетворить граничным условиям прилипания , требующим обращения в нуль скорости на всех твердых поверхностях, ограничивающих поток. В то же время хорошо иавестно, что для вязкой жидкости (со сколь угодно малым коэффициентом вязкости) прилипание обязательно должно иметь место. Поэтому при движениях вязкой жидкости, характеризующихся большим числом Рейнольдса, только вдали от твердых стенок течение будет близким к тому, которое могло бы иметь место в случае идеальной жидкости (с нулевой вязкостью) вблизи же от етенок образуется тонкий слой, в котором скорость течения очень быстро изменяется от нулевого значения на стенке до значения на внешней границе слоя, весьма близкого к тому, которое получилось бы при те-чении идеальной жидкости. Быстрое изменение скорости внутри этого так называемого пограничного слоя приводит к тому, что в его пределах влияние сил трения на деле оказываете вовсе не малым, а и ёщишм. тот порядок, что и влияние сил инерции. .....  [c.48]


Смотреть страницы где упоминается термин Дифференциальные уравнения движения жидкости в пограничном слое : [c.486]    [c.22]    [c.51]    [c.116]    [c.165]   
Смотреть главы в:

Динамика вязкой несжимаемой жидкости  -> Дифференциальные уравнения движения жидкости в пограничном слое



ПОИСК



283 — Уравнения жидкости

Движение в пограничном слое

Движение дифференциальное

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные уравнения движения жидкости

Дифференциальные уравнения пограничного слоя

Жидкости Пограничный слой

Уравнения движения жидкости

Уравнения пограничного сло

Уравнения пограничного слоя



© 2025 Mash-xxl.info Реклама на сайте