Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Система уравнений задачи о плоском напряженном состоянии

Система уравнений задачи о плоском напряженном состоянии. В предположении малости толщины плиты задача о напряженном состоянии при симметричном нагружении ее боковой поверхности сведена к рассмотрению величин на срединной плоскости. Разыскивается не тензор напряжений, а усредненные значения основных напряжений Г Р, тогда как остальные компоненты Г , этого тензора, вследствие их малости сравнительно с основными, исключены из рассмотрения.  [c.764]


На стр. 49 отмечалось, что система уравнений для задач о плоском напряженном состоянии при сделанных предположениях (Од = Т ег = = О, а , Оу, Тху не зависят от 2), которую мы сочли достаточной, не обеспечивает удовлетворение всех условий совместности. Эти предположения требуют, чтобы величины Ех, Еу, 8 , Уху не зависели от 2 и чтобы ухг Ууг равнялись нулю. Первое из условий совместности (125) включалось в теорию плоского напряженного состояния в качестве уравнения (21). Легко проверить, что остальные пять уравнений удовлетворяются только в том случае, когда представляет собой линейную функцию от х и у, что является скорее исключением, чем правилом, в решениях, полученных в главах 3 — 6. Очевидно, что эти решения не могут быть точными, однако, как мы сейчас покажем, они являются достаточно близким приближением для тонких пластинок.  [c.284]

Подставив этй выражения в уравнение (П.22) и использовав систему уравнений (П,21), можно сделать вывод, что уравнение (П.23), полученное для задач о плоском напряженном состоянии, выполняется и для задач о плоском деформированном состоянии. В обш,ем случае действия объемных сил воспользуемся системой уравнений (П.20), откуда найдем  [c.581]

Итак, для решения задачи о плоском деформированном состоянии мы получили снова восемь уравнений (1.33), (2.3), (2,11) с восемью неизвестными функциями. Граничные условия для этой системы уравнений формулируются аналогично тому, как это было сделано для плоского напряженного состояния.  [c.39]

В заключение рассмотрим с точки зрения статико-геометрической аналогии предельный случай, когда оболочка превращается в пластинку. Тогда в уравнениях теории оболочек надо положить Ri = R.j. = оо, и оболочки, как будет показано в 10.20, распадутся на две самостоятельные системы. Одна из них представляет собой уравнения изгиба пластинок, а другая — уравнения обобщенного плоского напряженного состояния, для которых роль функции Эри играет функция напряжений с. Статико-геометрическая аналогия в этом случае объясняет хорошо известный факт, что для функции Эри в плоской задаче и для нормального прогиба в теории изгиба пластинок получается одинаковое уравнение (бигармоническое).  [c.78]

Математическая теория пластичности использует свойства линий скольжения при решении задач малой упруго-пластической деформации как в случае плоской деформации, так и в случае плоского напряженного состояния (а = О, = 0, = О и а , а у, от г не зависят), а также для решения задач плоского пластического течения идеально пластичного вещества. При этом любое решение задачи должно удовлетворять системе трех уравнений с тремя неизвестными (6-4) и (6-7).  [c.172]


Если массовые силы отсутствуют или постоянны, то при решении плоских статических задач теории упругости (задач о плоской деформации или обобщенном плоском напряженном состоянии) часто пользуются функцией напряжений Эри (если массовые силы отличны от нуля, то их вклад в решение может быть учтен дополнительно при помощи принципа суперпозиции путем нахождения частных интегралов системы линейных дифференциальных уравнений).  [c.210]

При исследовании оболочек нулевой кривизны и пологих оболочек, срединная поверхность которых изометрична плоской пластинке, нередко за вспомогательное принимается состояние пластинки, что упрощает построение ядер, но вместе с тем меняет и их структуру. В последнее время выдвинута идея о применении фокусированных ядер, т. е. быстро затухающих вспомогательных состояний, для улучшения сходимости вычислительного процесса (Н. А. Кильчевский, 1960 Н. А. Кильчевский, X. X. Константинов и Н. И. Ремизова, 1966). Пока же весь этот круг вопросов характеризуется различными постановками задач, выдвижением новых способов и отсутствием конкретного опыта, добываемого прж решении задач приведения до логического конца, т. е. до определенной системы двумерных уравнений. Наибольший интерес представляет решение задач, при которых напряженное состояние оболочки должно быть найдено при помощи уравнений теории упругости (например, краевые эффекты типа Сен-Венана, состояние около сосредоточенной нагрузки, около фронтов распространения возмущений и т. д.).  [c.265]

Ряд задач можно отнести к категории плоских или приближенно плоских. Плоское деформированное состояние отличается тем, что напряжения и деформации зависят лишь от двух переменных или, иными словами, скорости течения всюду в теле параллельны какой либо плоскости (например, плоскости х о у). В этом случае система уравнений существенно упрощается. В частности, для плоского течения  [c.77]

В настоящей главе рассматриваются частные случаи упругого равновесия тела с прямолинейной анизотропией, ограниченного цилиндрической поверхностью, на которое действуют поверхностные и объемные усилия, нормальные к образующей и не меняющиеся по длине. Если коэффициенты ац, Aij также не меняются по длине и плоскости поперечных сечений совпадают с плоскостями упругой симметрии, то эти сечения остаются плоскими и после деформации и напряженно-деформированное состояние известно под названием плоской деформации. В более общих случаях анизотропии, когда плоскости упругой симметрии пересекают геометрическую ось под углом не равным 90°, или параллельны ей, или совсем отсутствуют, то деформацию уже нельзя назвать плоской ее можно назвать обобщенной плоской деформацией . В главе 4 исследование ведется в декартовой системе координат, т. е. предполагается, что обобщенный закон Гука выражается уравнениями (18.3), где atj — постоянные. Рассмотрен также случай прямолинейно-ортотропного неоднородного тела и ряд частных задач.  [c.131]

Недостаточность краевых условий (6)-(8) приводит к необходимости частичного предугадывания внутреннего состояния материала слоя на основе опытных данных, соображений симметрии и Т.Д. Обычно в таких случаях используются предположения о виде касательных напряжений г (гипотеза Прандтля, линейность г по какой-либо переменной [1 5]) или о характере функций смещений (гипотезы плоских или параболических сечений [1]), или оба вида предположений [4]. При этом задача становится переопределенной и не имеет точного решения. Однако приближенный характер уравнений и задачи в целом делают такого сорта противоречивость не очень существенной -требуется лишь, чтобы принятые допущения не приводили к явному несоответствию с каким-либо уравнением системы (1)-(5).  [c.154]

Наряду с углубленными экспериментально-теоретическими исследованиями самого вида условия прочности (условия предельного состояния), в механике грунтов интенсивно развивались математические методы решения задач о предельных напряженных состояниях грунтовых массивов. Это было связано с тем, что некоторые задачи (плоская и осесимметричная) при определенных граничных условиях, формулируемых в напряжениях, оказываются статически определимыми, если предположить, что в каждой точке рассматриваемой в задае области грунтового массива среда находится в предельном напряженном состоянии. При этих условиях соответствующая математическая задача формулируется для некоторой системы гиперболических уравнений, для решения которой можно воспользоваться хорошо развитым математическим аппаратом, в частности методом характеристик. В этом направлении после классических работ  [c.212]


Упругое равновесие твердых тел описывается уравнениями плоской задачи теории упругости в случае плоской деформации цилии-дрических тел постоянного поперечного сечения, когда на тело действуют внешние силы, нормальные к его оси и одинаковые для всех поперечных сечений указанного тела, либо в случае обобщенного плоского напряженного состояния, т. е. при деформации тонкой пластины силами, действующими в ее плоскости. При этом для определения напряженно-деформированного состояния в произвольной точке деформируемого упругого изотропного тела необходимо найти три компоненты тензора напряжений —Оу, х у (рис. 1) и две составляющие вектора перемещений — и, v. Если система декартовых координат выбрана так, что плоскость xOi/ совпадает или с поперечным сечением стержня, или со срединной плоскостью пластины, указанные компоненты в условиях плоской задачи теории упругости являются функциями двух переменных (х и i/).  [c.7]

Дифференциальные уравнения равновесия (7.15) и условие пластичности Мизеса — Генки (7.18) содержат три компоненты напряжений Ох Оу Хху. Следовательн , данная система уравнений пластического равновесия в компонентах напряжения может решаться независимо от уравнений (7.17) или (7.17а), содержащих компоненты перемещения или компоненты скоростей перемещения. Таким образом, задача о нахождении напряжений в условиях плоского напряженного состояния при заданных на поверхности напряжениях является статически определимой.  [c.174]

А, В,. . шестиугольника на рис. 1). Для таких ( статически определимых ) напряженных состояний (Д. Д. Ивлев, 1966) система уравнений будет гиперболической. Доводы физического характера, иногда высказываемые в пользу этой схемы, продиктованы скорее заманчивой простотой математического анализа, нежели существом вопроса. В рамках этой схемы решение многих задач просто невозможно (например, задачи плоского напряженного состояния). Вместе с тем представляется излишне суровой и резко отрицательная точцка зрения в отношении условия полной пластичности, наиболее ясно высказанная в книге Р. Хилла ( искусственное и нереальное условие текучести , такие вычисления имеют небольшое или не имеют никакого значения ). Подобные решения могут иметь несомнен ный интерес. При этом, однако, оценка решений, построенных с помощью условия полной пластичности, должна опираться на экстремальные теоремы. Если решению по этой схеме отвечает кинематически допустимое поле скоростей, то подобное решение приводит к верхней границе предельной нагрузки. Если же напряженное состояние возможно продолжить на все тело, не нарушая условие текучести, мы получим нижнюю границу. В тех случаях, когда полученное решение нельзя отнести ни к одному из упомянутых классов, вопрос о значимости решения остается открытым.  [c.100]

В последние годы появились работы [2.66—2.69] и [3.14, 3.16, 3.36], свидетельствующие об интенсивных разработках, проводимых А. С. Космодамианским и его сотрудниками в области многосвязных и периодических задач растяжения и изгиба пластин в различных аспектах. В частности, здесь рассмотрена периодическая плоская задача для внешности подкрепленных [2.67] и не подкрепленных [3.14] эллиптических отверстий, упругое равновесие плоскости с периодической системой упругих ) включений [3.15] и т. д. В статье [3.36] рассмотрена периодическая задача о растяжении изотропной пластинки с квадратными вы-peзa пl, подкрепленными жесткими кольцами. В работе [2.66] доказывается квазирегулярность систем алгебраических уравнений, получаемых при рассмотрении напряженного состояния  [c.266]

К настоящему времени решены уже многие плоские задачи о напряженно-деформированном состоянии тел с отверстиями и трещинами, однако в основном они касаются случаев неограниченных областей (плоскость, полуплоскость, полоса). Изучение таких задач было начато Бови [135] и развито затем другими исследователями [И. 29, 30, 45, 65, 70, 95]. Данная глава посвящена решению задач об упругом равновесии конечной многосвязной области с трещинами и отверстиями, среди которых имеется хотя бы одно круговое. При этом, как и в предыдущей главе, понижен порядок исходной системы сингулярных интегральных уравнений при использовании общего аналитического решения первой основной задачи для бесконечной плоскости с круговым отверстием. Указанный подход позволяет более эффективно решать задачи для многосвязных областей различных внешних очертаний, ослабленных трещинами и круговым отверстием. При этом сравнительно легко могут быть рассмотрены случаи действия сосредоточенных или разрывных нагрузок на круговом граничном контуре, а также трещины, выходящие на край указанного отверстия.  [c.183]

Прежде всего рассмотрена локальная задача о контакте между недеформируе-мой четвертью плоскости и полуплоскостью, находящейся в условиях ползучести. Она эквивалентна известной задаче Черепанова Райса Хатчинсона о трещине. Отсюда получено напряженно-деформированное состояние вблизи угла как функция одного свободного параметра. Внутреннее решение для тонкого слоя получено асимптотическим анализом, для полупространства — методом Н.Х.Арутюняна, оба решения с)п ь функции еще одного свободного параметра. Размер погранслоя может быть рассмотрен как третий свободный параметр. Интегральное условие статики системы и требование непрерывности основных характеристик контактной задачи приводят к нелинейному алгебраическому уравнению для численного определения свободных постоянных. В частных сл) аях его решение может быть дано явными формулами. Помимо названных задач решена периодическая задача, моделирующая изготовление штамповкой плиты с ребрами. Более того, полностью изучены как отдельные случаи локальное решение вблизи вершины угла при ползучести (произвольный угол, различные граничные условия), асимптотика осесимметричной задачи вблизи конической точки (произвольный зп ол, различные граничные условия), а также найдены внутренние асимптотики плоской задачи для тонкого слоя из материалов Надаи и Эмбера.  [c.539]


В. Ранкина, Л. Прандтля, Р. Хилла было решено множество конкретных краевых задач о несущей способности оснований и устойчивости откосов и подпорных стенок (В. В. Соколовский, 1942, 1954, 1960 С. С. Голушкевич, 1948, 1957 В. Г. Березанцев, 1953, и др.). Нужно отметить, что в отличие от плоской задачи в случае осевой симметрии для замыкания системы уравнений в напряжениях одного условия предельного состояния Кулона недостаточно, и приходится привлекать дополнительное предположение о напряженном состоянии. В качестве такого предположения В. Г. Березанце-вым было использовано известное условие Кармана — Хаара о полноте предельного состояния, т. е. о совпадении промежуточного по величине главного напряжения с одним из двух других.  [c.212]

Общая постановка задач о трещинах продольного сдвига, где распределению смещений соответствует случай так называемой антиплоской деформации (напряженное состояние в бесконечном цилиндрическом теле, возникающее под действием постоянных нагрузок, направленных вдоль образующих цилиндра), рассмотрена в работе Г. И. Баренблатта и Г. П. Черепанова (1961). В отличие от трещин нормального разрыва и трепщн поперечного сдвига, в этом случае возможно получить эффективные точные решения многих задач, так как единственное отличное от нуля смещение w удовлетворяет в этом случае уравнению Лапласа. Здесь возможно непосредственное применение широко развитых методов и результатов гидродинамики благодаря очевидной аналогии задач теории упругости для антиплоской деформации и задач плоской гидродинамики. В указанной работе были получены точные решения задач для бесконечного тела, содержащего круговое отверстие с одной или двумя трещинами, нагруженного на бесконечности постоянным касательным напряжением (аналог задач О. Л. Бови для трещин нормального разрыва),и смешанной задачи для изолированной прямолинейной трещины, на части которой задано постоянное смещение (аналог задачи о расклинивании клином конечной длины, рассмотренной И. А. Маркузоном. в 1961 г.). Здесь же исследованы задачи взаимодействия бесконечной системы одинаковых трещин, расположенных вдоль действительной оси, и случай, когда равные трещины расположены в виде вертикальной однорядной решетки. При рассмотрении задачи о развитии криволинейных трещин продольного сдвига, а также трепщн, форма которых мало отличается от прямолинейной или круговой, авторы использовали гипотезу о том, что развитие криволинейной трещины продольного сдвига происходит по направлению максималь-  [c.386]


Смотреть страницы где упоминается термин Система уравнений задачи о плоском напряженном состоянии : [c.596]    [c.357]    [c.192]    [c.201]   
Смотреть главы в:

Теория упругости  -> Система уравнений задачи о плоском напряженном состоянии



ПОИСК



Задача 2. Плоское напряженное состояние

Напряженное плоское

Плоская задача

Плоское напряженное состояние

Система сил, плоская

Состояние плоское

Состояние системы

Уравнение состояния

Уравнения для плоских задач

Уравнения плоского напряженного состояния



© 2025 Mash-xxl.info Реклама на сайте