Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные характеристики циклического нагружения

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЦИКЛИЧЕСКОГО НАГРУЖЕНИЯ  [c.332]

Оно происходит в результате многократного (циклического) приложения нагрузки. Специфическая особенность усталостного разрушения - возможность разрушения элемента конструкции при амплитудах напряжений, существенно меньших предела текучести о 0() 2- Под циклом нагружения понимают последовательность изменения нагрузки, которая заканчивается первоначальным состоянием и затем повторяется [60] (рис. 2.37). Цикл, например, синусоидально изменяющихся напряжений описывается максимальным циклическим напряжением минимальным циклическим напряжением периодом изменения Т. Обратная величина Т называется частотой изменений /. Амплитуда является переменной составляющей нагружения. Она определяется как -( max min)/2. К числу основных характеристик циклического нагружения следует отнести и среднее циклическое напряжение - ( тах min)/2. Под размахом колебания нагрузки понимают разницу между максимальным и минимальным ее значениями в течение одного цикла = За .  [c.59]


Оказалось, что исследуемая сталь при указанных максимальных температурах практически не реагирует на форму цикла нагрева и основные характеристики циклического неизотермического деформирования соответствуют испытаниям с постоянными температурами. Так, на рис. 2.5.1, а показаны диаграммы исходного нагружения при двух различных уровнях нагружений. Несмотря на определяемое особенностями температурных режимов различие хода кривых деформирования в промежуточных точках диаграмм, конечные величины в пределах разброса данных одинаковы для изотермических и неизотермических нагружений. Аналогичные свойства обнаружены и у диаграмм циклического деформирования.  [c.115]

Параметры критической длины усталостной трещины и зоны долома используются в настоящее время для оценки циклической вязкости разрушения К(с. Характеристики вязкости разрушения при циклическом нагружении для циклически разупрочняющихся сталей существенно ниже, чем характеристики статической вязкости разрушения. Для циклически стабильных и циклически упрочняющихся металлических материалов существенного различия между этими характеристиками нет. Основные типы усталостных изломов в зависимости от вида нагружения представлены в табл. 1.  [c.66]

Специальная аппаратура и методики для определения основных характеристик вязкости разрушения при статическом, динамическом и циклическом нагружениях разрабатывались в Лаборатории ИГД СО АН СССР по проблеме упрочнения металлических сплавов с учетом имеющихся нормативных документов [228, 234—236].,  [c.138]

При усталостных испытаниях основными характеристиками являются предел выносливости, усталостная долговечность, чувствительность к концентрации напряжений, степень поврежденности циклическими нагрузками, скорость роста трещины, число циклов до появления трещины, длительность периода живучести, характеристики петли гистерезиса, изменение деформации образца в процессе циклического нагружения, изменение величины раскрытия трещины.  [c.7]

ЛИЗ напряженного состояния и несущей способности при известных условиях нагружения и известных характеристиках прочности и жесткости. Ухудшение свойств материала в процессе циклического нагружения вызывает всего лишь изменение основных исходных данных для анализа. Дело обстоит так потому, что анализ напряженного состояния требует знания зависимости между напряжениями и деформациями, а анализ несущей способности — знания предельных напряжений или деформаций в зависимости от используемого крите-  [c.88]


Основными характеристиками, необходимыми при оценке малоцикловой прочности, являются 1) диаграмма статического деформирования со всеми стандартными величинами прочностных свойств (предел пропорциональности, текучести, прочности) и свойств, характеризующих пластичность (равномерное и полное удлинение, коэффициент поперечного сужения) 2) диаграммы циклического деформирования при симметричном жестком и мягком нагружениях с величинами параметров обобщенной диаграммы деформирования 3) кривые усталости при малоцикловом мягком и жестком нагружениях при симметричном и асимметричном циклах.  [c.210]

Для проведения испытаний с целью изучения закономерностей неизотермической малоцикловой прочности, а также неизотермического деформирования используются установки растяжения — сжатия, снабженные системами программного регулирования. В этих установках основные решения вопросов управления режимами неизотермического нагружения, измерения процесса деформирования и нагрева, регистрации параметров соответствуют использованным в исследованиях сопротивления деформированию и разрушению в условиях длительного малоциклового нагружения, а также в описанной выше крутильной установке. Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса (напряжение, деформация, температура) в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.253]

В сборнике рассматриваются основы методов расчетного и экспериментального определения прочности и долговечности циклически нагруженных элементов конструкций в широком диапазоне температур, времен и чисел циклов. Приводятся критерии и основные уравнения статических и циклических предельных состояний в температурно-временной постановке рассмотрены закономерности деформирования и разрушения в зонах концентрации и в связи с неоднородностью напряженных состояний. Рассмотрены методы испытаний на циклическое нагружение, описан ряд опытных результатов. Систематизированы данные по характеристикам малоцикловой усталости, по концентрации напряжений и деформаций, необходимые для расчета прочности. Излагаемый материал в значительной степени основывается на результатах работ сотрудников Института машиноведения, доложенных на Всесоюзном симпозиуме по малоцикловой усталости при повышенных температурах в Челябинске в 1974 г.  [c.2]

Основной характеристикой мембранной зоны является кривая циклической ползучести, зкспериментально или расчетно полученная для условий повторного нагружения с постоянными максимальными напряжениями. Как показывают результаты испытаний материала типа аустенитной коррозионно-стойкой стали (см. рис. 2.65, а), скорость ползучести в цикле можно считать (в первом приближении) практически постоянной в диапазонах 1. .. 200 и 201. .. 10000 циклов. При  [c.124]

Для изучения процессов циклического упругопластического деформирования и разрушения при однородных и неоднородных напряженных состояниях существенное развитие получили модели циклически деформируемых сред. Основные параметры уравнений состояния для циклического нагружения предложено определять по результатам статических и циклических испытаний с автоматической регистрацией диаграмм деформирования, по которым дается оценка характеристик микронапряжений, скалярных функций, неоднородности пластического деформирования.  [c.26]

Влияние частоты наложенных деформаций и, что не менее важно, скорости нагружения в условиях двухчастотного нагружения может быть проиллюстрировано па примере сопоставления рассмотренных выше результатов и экспериментальных данных, полученных при двухчастотном нагружении этой же стали с формой циклов, представленной на рис. 4.19, е, когда частота низкочастотного нагружения (включая время выдержек), температура, а также уровни максимальных и высокочастотных напряжений оставались прежними, а частота а,,, составляла /2 = 30 Гц, что соответствовало соотношению частот = 18 000. Характер развития деформаций в этих условиях показан на рис. 4.27. Важно, что их кинетика в основном подобна изменению соответствующих характеристик при нагружении с меньшим соотношением частот (см. рис. 4.25). Как и в последнем случае, полная ширина петли гистерезиса б после уменьшения в первые циклы нагружения вследствие упрочнения материала в дальнейшем несколько стабилизируется, а затем начинает увеличиваться (рис. 4.27, а), но интенсивность разупрочнения материала в этом случае существенно ниже, чем при нагружении с/2//1 = 80. Активная же составляющая циклической пластической деформации бд вплоть до разрушения остается на установившемся уровне для всех исследованных напряжений. В связи с этим увеличение с числом циклов полной ширины петли следует отнести за счет деформации циклической ползучести которая также непрерывно увеличивается после начальной стадии нагружения (рис. 4.27, 6). Если сравнить ее абсолютные значения для одних и тех же уровней максимальных напряжений двухчастотного нагружения при /2 /1 = 18 000 и /2//1 = 80 с нагружением по трапецеидальной форме циклов, принимая во внимание при этом закономерности взаимосвязи диаграмм циклического деформирования по про-  [c.96]


При измерении малоцикловых деформаций в элементах конструкций с помощью тензорезисторов очень важна стабильность их характеристик во времени и по числу циклов в условиях циклического воздействия температур. Имеются данные, что при упругих деформациях не изменяются основные характеристики до числа циклов нагружения 10 (например, для тензодатчиков ПКБ-20-120) 92]. При работе тензорезисторов за пределами упругости и повторном деформировании возникает ряд специфических особенностей непостоянство коэффициента тензочувствительности при высоких циклических деформациях и его изменение по числу циклов нагружения уход нуля в процессе циклического деформирования выход из строя тензорезисторов через определенное для каждого уровня размаха деформаций число циклов нагружения.  [c.170]

К числу основных характеристик материалов, определяющих возможность их применения в конструкциях, относятся сопротивление деформациям и разрушению. Учитывая постоянную тенденцию к понижению запасов прочности и повышению эксплуатационной надежности, наряду с обеспечением сопротивления элементов конструкций упругим деформациям важное значение приобретают анализ и обоснование сопротивления неупругим (упругопластическим и реологическим) деформациям. Допустимость возможности возникновения неупругих деформаций в конструкциях и необходимость их надлежащего учета в расчетах прочности и надежности вытекают из требований минимальной массы конструкций (атомных, авиационных, космических, подводных) и технологических возможностей при изготовлении крупногабаритных конструкций (химические и атомные реакторы, тепловые энергоблоки больших мощностей, супертанкеры, домны-гиганты, нефте-газохранилища и перекачивающие установки). Так как при эксплуатации указанных конструкций обычно имеет место циклическое нестационарное тепловое и механическое нагружение, то для наиболее нагруженных зон этих конструкций становятся характерными процессы циклических упругих и упругопластических деформаций. При таких условиях деформирования образование пре-  [c.67]

Для сопоставления характера развития деформаций при двухчастотном мягком нагружении с наложением высокочастотной составляющей более высокой частоты были проведены испытания с соотношением частот сог/сй = 18 000 и формой цикла, аналогичной испытаниям с соотношением частот Юг/ы = 80. При этом использовалась установка для высокотемпературных двухчастотных программных испытаний с большим соотношением частот [39, 41]. Трубчатые образцы испытывались при Т = 650° С. Время выдержки, в течение которого действовали динамические напряжения Оа = 60 МПа с частотой ша = 30 Гц, в полуциклах растяжения и сжатия составляло т = 5 мин. Характер изменения параметров диаграмм циклического деформирования в указанных условиях представлен на рис. 5.14. Как видно, он в основном подобен изменению соответствующих характеристик при нагружении с меньшим соотношением частот (рис. 5.9). Как и в последнем случае, полная ширина петли гистерезиса б после уменьшения в первые циклы нагружения за счет упрочнения материала в дальнейшем стабилизируется, а затем начинает увеличиваться (рис. 5.14, а), но интенсивность расширения петли в этом случае существенно ниже, чем при нагружении с = 80. Активная  [c.187]

При таких исследованиях в системах нагружения должна быть обеспечена возможность проведения статического и циклического деформирования с варьируемыми скоростями и коэффициентами асимметрии цикла, с обеспечением выдержек при заданных деформациях или напряжениях, с автоматическими измерениями и регистрацией усилий и номинальных деформаций (см. гл. 2). Принципиальные схемы и основные характеристики испытательных установок указанного назначения (с программируемым и непрограммируемым электрогидравлическим приводом) содержатся также в работе [35].  [c.219]

В рассмотренные выше зависимости входят в основном характеристики механических свойств материалов, определенные при статическом нагружении. При этом предполагается, что развитие трещины происходит в каждом цикле, поэтому не учитывается накопление повреждений и изменение характеристик механических свойств материала у вершины при циклическом нагружении. Силовые, энергетические и деформационные характеристики режимов циклического нагружения, определяемые расчетом, используемые в указанных зависимостях, не учитывают влияния остаточных напряжений, изменение толщины образцов и коэффициента асимметрии цикла на реальное напряженно-деформированное состояние материала у вершины трещины, когда размеры пластических зон достаточно велики, но не происходит пластического течения всего оставшегося сечения образца. Все это ограничивает применение рассмотренных зависимостей, как правило, только исследованными-материалами, условиями испытаний, режимами нагружения и толщинами образцов и не позволяет прогнозировать условий перехода к нестабильному развитию трещин и закономерностей нестабильного развития трещин.  [c.31]

Условия эксплуатации машин и механизмов — высокая и низкая температура, агрессивная среда, частота, асимметрия и нестационар-ность нагружения и т. п. существенно отражаются на сопротивлении материалов усталостному разрушению. В большинстве случаев учесть влияние эксплуатационных факторов аналитически не представляется возможным. В прикладных исследованиях при испытании материалов стараются как можно точнее отразить условия эксплуатации деталей. Ниже приведены результаты изучения влияния основных эксплуатационных факторов на характеристики трещиностойкости материалов при циклическом нагружении.  [c.146]

Циклические характеристики вязкости разрушения. В соответствии с обнаруживаемыми в эксперименте основными закономерностями развития трещин при циклических нагружениях, описанными графиками функций на рис. 5.3 и аналитически — соотношением (5.14), в качестве циклических характеристик вязкости разрушения (циклической трещиностойкости) принимаются пороговое значение КИН Ка или Ki th, циклическая вязкость разрушения Kf или Ki f > а также параметры а и п. Эти характеристики трещиностойкости определяются по наблюдаемым в эксперименте зависимостям, описывающим увеличение длины трещины, от уровня напряжений и от числа циклов нагружения / = / (а, N). Испытания производятся обычно при пульсирующих положительных циклах нагружения.  [c.56]


Основное внимание в справочнике уделено характеристикам неупругого деформирования и разрушения материалов при кратковременном, длительном и циклическом нагружениях в условиях нормальных и повышенных температур После традиционных сведений о химическом составе, общепринятых характеристиках (Оо2, Og, 5, /) и их нормируемых минимальных значениях дается по возможности подробная информация об истинных (действительных) диаграммах деформирования, циклических кривых, параметрах длительной и малоцикловой прочности При этом широко используется аппроксимация опытных данных приводятся параметры степенной аппроксимации действительной кривой деформирования, циклической кривой, кривых малоцикловой усталости  [c.257]

Эксплуатационные режимы нагружения элементов конструкций имеют, как правило, более сложный характер, чем распространенные в практике экспериментов синусоидальные или треугольные формы циклов нагружения, хотя именно они являются наиболее часто используемыми при получении основных характеристик циклических свойств материалов и закономерностей их изменения в процессе деформирования. Синусоидальный или треугольный законы изменения напряжений и деформаций использовались в качестве основных и при экспериментальном изучении кинетики циклической и односторонне накапливаемой пласти ческих деформаций и их описании соответствующими зависимостями, рассмотренными в предыдущих главах. В ряде случаев условия эксплуатационного нагружения представляется возможным схематизировать такими упрощенными режимами. Однако в большинстве случаев для исследования поведения материала с учетом реальных условий оказывается необходимым рассмотрение и воспроизведение на экспериментальном оборудовании таких более сложных режимов, как двух-и многоступенчатое циклическое нагружение с различным чередованием уровней амплитуд напряжений и деформаций, нагружение трапецеидальными циклами с выдержками различной длительности на экстремумах нагрузки в полуциклах растяжения и (или) сжатия, а также в точках полного снятия нагрузки, двухчастотное и полигармо-ническое нагружение, нагружение со случайным чередованием амплитуд напряжений, соответствующим зарегистрированными в эксплуатации условиями. Особенно необходимым воспроизведение и исследование таких режимов становится в области повышенных и высоких температур, когда на характер и степень проявления температурно-временных эффектов, а следовательно, и на кинетику деформаций, существенное влияние оказывают факторы длительности, формы цикла и уровней напряжений или деформаций в процессе нагружения. Ниже приведены исследования закономерностей развития деформаций для ряда упомянутых режимов нагружения, позволяющие проанализировать применимость тех или иных уравнений кривых малоциклового деформирования и применение параметров этих уравнений при изменении режимов.  [c.64]

Трещина за каждый цикл нагружения получает незначитель-Бое приращение, так что ее распространение можно считать ква-зистатическим, пренебрегая динамическими эффектами. Как показывают расчеты, коэффициент интенсивности напряжений Ки у вершины трещины вдоль ее траектории развития практически равен нулю. Поэтому при определении живучести можно использовать зависимость скорости распространения трещины от коэффициентов интенсивности напряжений, установленной экспериментальным путем на опытных образцах с трещиной при разрушении нормальным отрывом, когда /Сы=0. Зависимость, связывающая скорость роста трещины и наибольший коэффициент интенсивности напряжений Ki цикла /Стах или его размах А/С=(1—ЮКтах лри постоянном коэффициенте асимметрии цикла Я = Кт1п/Ктах и всех других условиях испытаний, дается диаграммой усталостного разрушения (см. рис. 12, где изображена схема типичной диаграммы усталостного разрушения в логарифмических координатах Igv—Ig/ max). По диаграмме усталостного разрушения устанавливают следующие основные характеристики циклической трещиностойкости материала [89]  [c.42]

Основной характеристикой циклической прочности является кривая усталости, которая связывает максимальные напряжения ашах (рис. 42) в цикле нагружения с количеством циклов, выдерживаемых деталью до образования трещин или разрушения При экспериментальном построении кривых усталости наблюдается разброс результатов, что объясняется случайным различием в структуре металла детали, ее обработки и другими обстоятельствами. Проведя значительное число испытаний, можно определить закон распределения количества циклов N до  [c.122]

Практика эксплуатации сварных нетермообрабатываемых конструкций в условиях циклического нагружения показывает, что в большинстве случаев разрушения возникают в сварном шве или области сопряжения шва с основным металлом. Это связано с комплексом факторов, снижающих работоспособность сварных соединений, основными из которых являются концентрация напряжений и деформаций в зонах сопряжения шва с основным металлом, остаточные сварочные напряжения (ООН), а также ухудшение характеристик сопротивления усталости металла шва и зоны термического влияния по отношению к основному металлу [59, 119, 144].  [c.268]

В режиме циклического нагружения основными характеристиками трещиностойкости являются параметры формулами Пэриса-Махутова. Для экспериментального определения этих величин изготавливаем образцы с трещиной согласно рекомендациям по изготовлению образца для оценки статической трещиностйкости (Х,р с той лишь разницей, что исходную суммарную глубину надреза + трещины устанавливают равной приблизительно а = h/3. Число таких образцов должно быть не менее 5.  [c.292]

При этом предполагается, что в зонах концентрации напряжений, где, как правило, происходят малоцикловые разрушения, накапливаются в основном усталостные повреждения в результате действия знакопеременных упругопластических деформаций. Вместе с тем в эксплуатационных условиях в результате работы конструкции на нестационарных режимах, в том числе при наличии перегрузок, возможно накопление односторонних деформаций, определяювцих степень квазистатического повреждения и влияю-ш их на достижение предельных состояний по разрушению. Для обоснования методологии учета накопления конструкцией (наряду с усталостными) квазистатических повреждений по результатам тензометрических измерений требуется решение прежде всего вопросов расшифровки показаний датчиков с целью воспроизведения истории нагруженности в максимально напряженных местах конструкции и оценки малоциклового повреждения для эксплуатационного контроля по состоянию. Малоцикловое повреждение может в общем случае оцениваться по результатам измерений, выполненных обычными тензорезисторами, но с расширенным диапазоном регистрируемых деформаций (до величин порядка нескольких процентов), характерных для малоцикловой области нагружений. Исследование [20] выполнялось в Московском инженерно-строительном институте и Институте машиноведения на базе разработанных в лаборатории автоматизации экспериментальных исследований МИСИ специальных малобазных тен-зорезисторов больших циклических деформаций. Аппаратура и методика эксперимента подробно описаны в [229]. На серийной испытательной установке УМЭ-10Т с тензометрическим измерением усилий и деформаций, а также крупномасштабным диаграммным прибором осуществлялось циклическое нагружение цилиндрических гладких образцов по заданному и, в частности, нестационарному режиму. Одновременно соответствующей автоматической аппаратурой производилась регистрация истории нагружения с помощью цепочек малобазных тензорезисторов, наклеенных на испытываемый образец. Сопоставление показаний тензорезисторов с действительной историей нагружения и деформирования образца, регистрировавшихся соответствующими системами испытательной установки УМЭ-10Т, давало возможность определить метрологические характеристики датчиков и особенности их повреждения в условиях малоциклового нагружения за пределами упругости. Наиболее существенными особенностями работы тензорезисторов в условиях малоциклового нагружения оказываются изменение коэффициента тензочувствительности при высоких уровнях исходной деформации и в процессе набора циклов нагружения, уход нуля тензорезисторов и их разрушение через определенное для каждого уровня размаха деформаций число циклов.  [c.266]


Периодический характер структурных изменений, впервые выявленный в работе [76], затем был зафиксирован в целом ряде работ для различных условий трения [26, 77, 78]. Большинство авторов связывают такой вид зависимости с периодическим разрушением поверхностного слоя и отмечают зависимость времени (числа циклов, пути трения), за которое материал проходит всю стадию от упрочнения до разрушения, от внешних условий трения. Проявление периодического характера процесса обнаружено но изменению микро- [76] и макронапряжений [77], электросопротивления [103], величины блоков [78], микротвердости [26, 122]. Соответственно и внешние характеристики трения, такие, как коэффициент трения и интенсивность износа, также могут периодически изменяться. Для тяжелых условий трения периодический характер изменения износа может быть выявлен обычным весовым методом [26, 136], для более легких режимов выявление периодического характера изменения силы трения стало возможным только путем прецизионных измерений [79]. Сказанное выше в равной степени относится как к основному материалу (большинство исследований выполнено на сталях), так и к пленкам вторичных структур, обра-зуюш ихся в процессе трения. При тяжелых режимах работы, связанных с повышением температуры на контакте (например, при нестационарном тепловом нагружении), наблюдается периодическое изменение структуры, обусловленное не только действием повторного циклического нагружения, но и циклическим изменением температуры трения, приводяш им к фазовым превращениям на контакте, которые также носят циклический характер. В результате наблюдается четко выраженная периодичность изменения износа от числа торможения [136].  [c.104]

Одной из основных характеристик материала при циклическом нагружении является петля гистерезиса. При нагружении поликри-сталлнческих металлов с постоянной амплитудой деформации или напряжения обычно после короткой стадии начального упрочнения или разупрочнения наступает область стабилизации. В этой области размеры и форма петли гистерезиса с числом циклом почти не изменяются. Одновременно стабилизируется внутренняя дислокационная структура и возникает характеристическое неоднородное распределение дислокаций [1].  [c.68]

Выводы и технологические рекомендации. Усталостная прочность жаропрочных сталей и сплавов при рабочих температурах и высокочастотном нагружении существенно зависит от следующих основных параметров качества поверхностного слоя шероховатости поверхности, глубины и степени наклепа. Технологические остаточные макронапряжения независимо от их величины и знака не оказывают заметного влияния на характеристики усталости. В условиях циклического нагружения и высоких температур они быстро релаксируются.  [c.230]

При создании сварных конструкций химаппаратуры и энергетических агрегатов в многослойном исполнении особую важность приобретают вопросы, связанные с оценкой их несущей способности с учетом воздействия эксплуатационных, технологических и силовых факторов [1]. Известно, что иногда изделия такого класса в эксплуатационных условиях могут подвергаться воздействию циклических нагрузок. Одной из основных характеристик, определяющих несущую способность многослойных конструкций, эксплуатируемых в условиях циклического нагружения, является сопротивляемость металла и сварных соединений усталостным разрушениям. При переходе на сварные конструкции с многослойной стенкой помимо комплекса  [c.256]

Методика расчета резьбовых соединений на мапоцикловую прочность при долговечностях 10° — 10 регламентируется нормами [11]. В основу принятых в нормах методов расчета положены принципы оценки прочности по предельным состояниям (см. гл. 2) разрушение, пластическая деформация по всему сечению детали, потеря устойчивости, возникновение остаточных изменений формы и размеров, приводящее к невозможности эксплуатации конструкции, появление макротрещин при циклическом нагружении. При выборе основных размеров резьбовых соединений, изготовляемых из материалов с отношением предела текучести (То,2 к пределу прочности щ, не превышающим 0,6, в качестве характеристики предельного напряжения принимается предел текучести. Запас прочности по пределу текучести = 1,5. В случае изготовления соединений из сталей с в  [c.199]

С учетом бесчисленного множества возможных комбинаций параметров а, к, т, г экспериментальное обоснование функциональных зависи.мостей (1.3) и (1.4) оказывается связанным со значительными принципиальными и методическими трудностями. В соответствии с этим возникает задача о выборе основных характеристик механического поведения материалов при циклическом нагружении в неупругой области и базовых экспериментов с учетом отсутствия (нормальные или повышенные температуры) и на.личия (высокие температуры) температурно-временных эффектов (рис. 1.2). Исходными для выбора параметров уравнений состояния являются результаты кратковременных и длительных статических испытаний. Данные этих испытаний позволяют установить пределы текучести От, характеристики упрочнения (показатель упрочнения при степенной и модуль упрочнения Gт при линейной аппроксимации / (а, е)) и пластичность (относительное сужение ф - или логарифмическая деформация е/,-). По данным д.лительных статических испытаний определяется скорость ползучести <1е1с1х, длительная прочность Сты и пластичность д.ля данной температуры Ь и времени т. Параметры уравнений состояния при малоцикловом деформировании наиболее целесообразно определять при нагружении с заданными амплитудами напряжений — мягкое нагружение. В качестве основных характеристик сопротивления деформированию в заданном А-полуцикле при этом используются ширина петли и односторонне накопленная пластическая деформация е р При этом ширина петли определяется как произведение ширины петли в первом полуцикле к = 1) на безразмерную функцию чисел циклов Р к)  [c.10]

Схемы диаграмм деформирования для мягкого и жесткого нагружений показаны на рис. 2.1. Мягкое нагруя ение характеризуется возможностью циклического изменения основных характеристик сопротивления деформированию — ширины петли  [c.26]

Анализ структуры и предпосылок вывода уравнения (4.22), характеризующего основной для диаграмм циклического упругопластического деформирования парал1етр — модуль циклического упрочнения показывает, что его величина и поцикловая кинетика определяются в первую очередь характеристиками исходного нагружения материала и шп, а также параметрами циклического деформирования А и С. Таким образом, эффект упрочнения материала вследствие действия высокочастотной деформации при равном с одночастотным нагружением уровне исходного деформирования может быть охарактеризован путем определения при двухчастотном нагружении соответствующих этим условиям величин модуля исходного упрочнения материала т и параметров циклического деформирования А и С что в свою очередь позво.лит определить особенности кинетики т[ в рассматриваемом случае.  [c.106]

Для изучения нсизотермической малоцикловой прочности при растяжении-сжатии и кручении используют стенды, снабженные системами программного регулирования [15, 71, 97], максимальное усилие растяжения и сжатия которых составляет 100 кН. В этих установках-Применены системы слежения с обратными связями по нагрузкам (деформациям) и температурам, отличающиеся непрерывным измерением и регистрацией основных характеристик процесса в форме диаграмм циклического деформирования, развертки изменения параметров во времени, а также кривых ползучести и релаксации при однократном и циклическом нагружении.  [c.150]

При определении характеристик циклического разрушения, как и при получении диаграмм циклического деформирования, используют два основных режима нагружения - с заданной амплитудой напряжений (СТа=сош1) и с заданной амплитудой деформаций (еа=соп81). С инженерной точки зрения важным оказывается достаточно широкий диапазон числа циклов до разрушения - от 10 до 10 . В этом диапазоне для конструкционных металлов выделяют характерные интервалы чисел циклов - ма-  [c.140]

Существенное снижение характеристик сопротивления усталостному разрушению металлов при наличии дефектов типа грещин известно давно. Однако особенн большой интерес к влиянию трещин на прочность материалов и деталей машин проявляется в последние годы. Эго вызвано интенсивным развитием относительно нового> раздела механики твердого деформируемого тела — механики разрушения, рас сматривающей условия разрушения на основе анализа напряженно-деформированного сосгояния в вершине трещины. В этом направлении выполнен большой объем теоретических и экспериментальных исследований, позволивших установить общие закономерности начала развития трещин, их стабильного развития и окончательного разрушения при циклическом нагружении с учетом влияния технологических,, конструкционных и эксплуатационных факторов. Эти исследования позволили еде-лагь следующие основные выводы.  [c.3]


В главе представлены основные результаты экспериментальных исследований свойств пластичных конструкционных материалов при однократном и циклическом нагружениях. Опыты при нестационарных воздействиях выявляют весьма сложные и многообразные эффекты, достаточно полный обзор которых занял бы слишком много места (и не соответствовал бы возможностям их учета в практике обеспечения прочности машин). Основное внимание уделено наиболее общим, типичным закономерностям поведения широкого класса материала. Для систематизации этих наблюдений приходится привлекать простейшие математические описания — модели эмпирического и полуфеноменологического характера для частных программ нагружения (более полное и последовательное описание деформационных и прочностных свойств материалов на основе феноменологического подхода будет рассмотрено ниже). Тем самым выявляются и наиболее важные характеристики и характеристические фунищи материалов — определяющие параметры этих простейших моделей. Систематизированная информация о конкретных значениях этих характеристик для исследованных материалов приводится в части Б.  [c.63]

С переходом от однократного нагружения к циклическому основным параметром разрушения становится скорость роста трещины dt/dN, зависящая от размаха коэффициента интенсивности напряжений Д/С. Построение зависимости скорости роста трещины от коэффициента интенсивности напряжений (диаграмма циклической трещино-стойкости - ДЦТ) позволяет получить универсальную характеристику циклической трещиностойкости для данных условий испытания. Экспериментально эту зависимость определяют испытанием образцов с предварительно созданным концентратором большая часть экспериментальных данных получена при испытании плоских образцов с относительно крупными трещинами в условиях одноосного или вне-центренного растяжения, изгиба и растяжения (сжатия), очень мало исследований выполнено на цилиндрических образцах, когда прямое наблюдение за развивающейся трещиной затруднительно.  [c.41]

При динамическом нагружении использовать механику разрушения для оценки материалов затруднительно, поскольку для определения характеристик тре-щиностойкости необходимо регистрировать нагрузку и длину трещины, соответствующие моменту перехода к нестабильному разрушению. Для статического и циклического нагружения проблема регистрации нагрузки и длины трещинь по мере нагружений образца, в основном, может считаться решенной, так как существует много способов, дающих возможность наблюдать за развивающейся трещиной (некоторые из них рассмотрены в книге в главах, освещающих статическое и циклическое нагружение). Регистрация длины трещины при динамическом нагружении связана с техническими трудностями. В этой главе рассмотрены методы исследования процесса разрушения сталей при динамическом нагружении, которые могут быть рекомендованы для широкого практического использования в заводских лабораториях предприятий черной металлургии при изучении качества металла .  [c.114]


Смотреть страницы где упоминается термин Основные характеристики циклического нагружения : [c.116]    [c.154]    [c.378]    [c.218]    [c.27]    [c.139]    [c.161]    [c.70]   
Смотреть главы в:

Сопротивление материалов Учебное пособие  -> Основные характеристики циклического нагружения



ПОИСК



299 — Основные характеристики

299 — Основные характеристики характеристики

Нагружение циклическое

Характеристика циклических нагружений

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте