Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прочность жаропрочных сталей

Таблица 3.45. Длительная прочность жаропрочных сталей и сплавов [3,24] Таблица 3.45. Длительная прочность жаропрочных сталей и сплавов [3,24]

Усталостная прочность жаропрочных сталей и сплавов после ЭХО определяется в основном шероховатостью поверхности.  [c.231]

Рис. 37. Длительная прочность жаропрочных сталей с интерметаллидным упрочнением при различных температурах Рис. 37. Длительная прочность жаропрочных сталей с интерметаллидным упрочнением при различных температурах
Следует отметить, что в сравнении с низколегированными сталями конструктивная прочность жаропрочных сталей и сплавов определяется более широким комплексом свойств. К ним относятся кратковременные прочностные свойства, сопротивление ползучести и релаксации, длительная прочность, кратковременная и длительная пластичность, циклическая прочность (выносливость).  [c.152]

В связи с этим и при определении предела длительной прочности жаропрочных сталей возможная концентрация напряжений должна быть учтена, т. е. пс-пытания по определению должны вестись на образцах соответствующей формы.  [c.581]

Предел длительной прочности жаропрочных сталей при различных температурах  [c.319]

При длительных выдержках в полуциклах растяжения или сжатия, сочетающихся с высокими температурами цикла нагрева, малоцикловая прочность может быть охарактеризована сопротивлением длительному статическому разрушению с учетом влияния цикличности [29]. Такая трактовка реализована при анализе прочности жаропрочных сталей и сплавов для термоциклов большой длительности за счет варьирования длительности выдержки при максимальной температуре цикла. Условие прочности в этом случае получается исходя из схемы расположения предельных линий ВС и EFD в координатах —Ig n (рис. 2.22). Линия ВС характеризует предельное состояние при длительном статическом нагружении, при Ттах, а EFD — предельное состояние при длительном термоусталостном нагружении. Полол<ение линии ВС определяется следующими допущениями учитывается лишь суммарное время выдержки при максимальной температуре цикла и считается, что термическое напряжение постоянно на этапе выдержки в полуцикле сжатия.  [c.73]

При повышении содержания титана растут временное сопротивление предел текучести длительная прочность (жаропрочные стали).  [c.46]


Химический состав (%) н пределы длительной прочности жаропрочных сталей  [c.322]

Пределы длительной прочности жаропрочных сталей и сплавов, применяемых в отечественной промышленности, приведены на фиг. 162.  [c.750]

Рнс. 4.71. Изменение длительной прочности жаропрочных сталей и сплавов Одл в зависимости от длительности нагружения т и температуры нагрева Г К [16,36]  [c.230]

Ниже 300°С наибольшую прочность имеют простые конструкционные стали /, обработанные на высокую прочность. Явления ползучести при температурах ниже 350—300°С не наблюдается, так что при рабочих температурах ниже 300°С нет необходимости в применении каких-либо специальных жаропрочных сталей и сплавов.  [c.464]

Мо, дефицитный элемент (в конструкционных сталях 0,2—0,6%), повышает прочность и твердость стали, незначительно снижает пластичность и вязкость, уменьшает отпускную хрупкость. В инструментальных (быстрорежущих) сталях Мо повышает красностойкость. Наиболее ценным свойством Мо является жаропрочность стали.  [c.158]

По назначению различают легированные стали конструкционные повышенной прочности, жаропрочные, жаростойкие, коррозионностойкие.  [c.122]

Под теплоустойчивостью (жаропрочностью) стали понимают ее способность сохранять высокую прочность при повышенных температурах, в частности высокую сопротивляемость ползучести. Для повышения теплоустойчивости сталь легируют вольфрамом, молибденом, ванадием.  [c.41]

Графит оказывает сильное влияние на основные свойства чугуна, в первую очередь на прочность и пластичность, характеризующие чугун как конструкционный материал. Он обладает такими преимуществами, которыми не обладают легированные и жаропрочные стали и сплавы. Графит имеет способность хорошо смазывать работающие при трении в паре чугунные и стальные детали при высоких температурах (800 - ЮОО°С).  [c.61]

Таблица 3.41. Прочность и пластичность жаропрочных сталей и сплавов при высоких температурах [3,24] Таблица 3.41. Прочность и пластичность <a href="/info/51123">жаропрочных сталей</a> и сплавов при высоких температурах [3,24]
Углерод увеличивает предел прочности, предел текучести стали, снижает ее пластичность и ударную вязкость. Кремний повышает прочностные и снижает пластические свойства, повышает жаростойкость (окалиностойкость) стали. Марганец влияет на прочность и прокаливаемость стали (увеличивает). Уменьшение пластичности стали наблюдается при содержании марганца более 1,5 %. В высоколегированных жаропрочных сталях марганец применяют для частичной замены дефицитного никеля. Алюминий используют для повышения жаропрочности и жаростойкости стали.  [c.222]

Сера и фосфор — вредные примеси. Сера способствует образованию трещин, а фосфор — резкому снижению ударной вязкости стали. Хром увеличивает прочность, прокаливаемость, сопротивление ползучести без снижения пластичности. При содержании хрома свыше 12 % сталь становится коррозионно-стойкой в атмосфере и во многих других промышленных средах. Никель — повышает прочность, пластичность, ударную вязкость и прокаливаемость, снижает температуру перехода в хрупкое состояние. Молибден делает аустенитную сталь более жаропрочной и коррозионно-стойкой в ряде высокоагрессивных сред. Титан и ниобий увеличивают прочность и жаропрочность сталей, а вольфрам— жаропрочность высоколегированных сталей.  [c.223]

Так, длительная прочность материалов, работающих при повышенных температурах, оценивается напряжением, при котором образец при постоянной температуре не разрушается в течение заданного времени tp = 100, 1000, 10 ООО ч). При этом для жаропрочных сталей, наблюдается степенная зависимость между временем до разрушения и постоянно приложенным напряжением а  [c.110]

Развитие турбореактивных двигателей потребовало разработки специальных охлаждающих устройств и применения новых жаропрочных сплавов для турбинных лопаток, сопловых аппаратов, дисков турбин, камер сгорания и т.п. В связи с этим в ЦИАМ были детально изучены тепловые потоки в камерах сгорания этих двигателей и спроектированы экономичные системы их воздушного охлаждения. С середины 40-х годов металлургические заводы приступили к изготовлению специальных жаропрочных сплавов на никелевой основе и первой отечественной марки жаропрочной стали ЭИ-383, по показателю длительной прочности (7—12 кг мм при температуре около +800° С) не уступавшей тогда лучшим зарубежным маркам.  [c.371]


Характерными параметрами структуры являются плотность его линейных элементов в единице объема (примером может служить плотность дислокаций) и удельная поверхность — универсальный показатель дисперсности структуры, не зависящий от формы частиц. Показатели твердости и прочности являются обычно простыми линейными функциями удельной поверхности. Кроме рассмотренных параметров существенное значение имеют, например для жаропрочных сталей, упрочненных дисперсной фазой, такие факторы, как число частиц в единице объема и среднее расстояние между частицами дисперсной фазы.  [c.211]

Жаростойкость металлов можно повысить двумя способами металлургическим (жаростойкое легирование) и созданием защитных покрытий. Предел прочности аустенитных жаропрочных сталей при темпе-  [c.136]

А. М. Паршин. Структура, прочность и пластичность нержавеющих и жаропрочных сталей и сплавов, применяемых в судостроении.— Л., иад-во Судостроение , 1972.  [c.122]

В деталях из жаропрочных сталей и сплавов в процессе выполнения различных технологических операций холодной обработки (прокатки, волочения, вытяжки, гибки, накатки, обработки резанием, упрочняющей механической обработки) неизбежно возникает сплошной или поверхностный наклеп. Рассмотрим влияние равномерного наклепа на длительную и усталостную прочность. Так как физическая сущность сплошного и поверхностного наклепа одна и та же, то знание характера закономерностей влияния на усталость, полученных для сплошного наклепа, может значительно облегчить установление подобных закономерностей и для поверхностного наклепа.  [c.195]

Уменьшение пластичности жаропрочных сталей и сплавов, связанное с механической обработкой и другими технологическими операциями, в которых производится предварительная пластическая деформация, приводит к ускорению повреждаемости сталей и сплавов при действии циклического и длительного статического нагружения, а следовательно, к уменьшению долговечности и особенно к снижению сопротивления многократным перегрузкам при испытании на усталость и длительную прочность.  [c.201]

Для деталей их жаропрочных сталей и сплавов, работающих при высоких температурах, оптимальным из условий усталостной и длительной прочности будет поверхностный слой с незначительным деформационным упрочнением, соответствующим примерно остаточной деформации, равной б = 1ч-4%, которая для каждого сплава должна устанавливаться в зависимости от рабочей температуры в условиях эксплуатации, или поверхностный слой, металл которого вообще не подвергался пластическому деформированию (без наклепа).  [c.202]

Нашими исследованиями установлено, что наиболее эффективными технологическими вариантами обработки силовых деталей из жаропрочных сталей и сплавов, обеспечивающими максимальную усталостную прочность при рабочих температурах, является  [c.232]

Выводы и технологические рекомендации. Усталостная прочность жаропрочных сталей и сплавов при рабочих температурах и высокочастотном нагружении существенно зависит от следующих основных параметров качества поверхностного слоя шероховатости поверхности, глубины и степени наклепа. Технологические остаточные макронапряжения независимо от их величины и знака не оказывают заметного влияния на характеристики усталости. В условиях циклического нагружения и высоких температур они быстро релаксируются.  [c.230]

Рис. 2. Зависимость длительной прочности жаропрочных сталей н сплавов п ajjj) Рис. 2. Зависимость длительной прочности жаропрочных сталей н сплавов п ajjj)
Если опыт на ползучесть до разрушения ставится в условиях 0 = onst, то кривые длительной прочности (статической усталости), построенные в полулогарифмических координатах, оказываются, по крайней мере на начальных участках, линейными. Это соответствует зависимости типа (1.3), если считать силу s пропорциональной действующему напряжению ст и 7 = onst. С понижением уровня напряжения на указанных кривых может появиться перелом с переходом к более пологому участку, при еще более низких уровнях — следующий перелом и так до выхода на предел длительной прочности. На рис. 1.19 приведены примеры кривых длительной прочности жаропрочных сталей при различных температурах Т и отношениях касательного напряжения к нормальному k. Эти кривые строились по данным опытов на ползучесть до разрушения тонкостенных трубчатых образцов, подвергавшихся осевому растяжению и закручиванию [59, 62] при постоянных значениях истинного нормального и истинного касательного напряжения.  [c.28]

Прочность жаропрочных сталей с повышением температуры падает более интенсивно, чем у жаропрочных сплавов. При нагреве от 20 до 800° (табл. 1) временное сопротивление для стали ЭЯ1Т уменьшается от 55 до 18 кгс/жж , для стали ЭИ69 — от 72 до 23 кгс мм .  [c.16]

Трунин И. И., Шабан Г. А. Изучение длительной прочности жаропрочных сталей при сложном напряженном состоянии. ЦНИИТМАШ, кн. 105. Структура и свойства новых жаропрочных материалов , Машгиз, 1962 РЖМ, 1963, 5В 556.  [c.261]

Аустенитные жаропрочные стали со структурой твердых растворов (например 09Х14Н16Б и 09Х14Н19В2БР), предназначенные для изготовления пароперегревателей и трубопроводов силовых установок, установок сверхвысокого давления, работают при 600—700 °С, их применяют в закаленном состоянии (закалка с 1100—1160 °С в воде или на воздухе). После закалки стали приобретают умеренную прочность и высокую пластичность. При длительном нагреве при 500—700 °С возможно выделение ст-фазы, которая охрупчивает сталь.  [c.290]


Длительная прочность деформируемых сталей и сплавов различных металлов при испытании в течение 1000 ч приведена на рис. 25. Как видно из рис. 25, жаропрочные сплавы при нагрузке <7в10(Ю = 300 МПа могут р 1ботать при следующих температурах, °С  [c.54]

Поопе термической обработки вольфрамистые стали обладают повышенной твердостью, прочностью и высокой ударной вязкостью. Вольфрам добавляют к конструкционным хромоникелевым и жаропрочным сталям, а также он является основным легирующим элементом в HH TpyMeHTiLibHHx И быстрорежущих сталях Р18 (W= 18%).  [c.96]

Параметрическими диаграммами, изображенными на рис. 3.2—3.8, проиллюстрирована целесообразность использования уравнения типа (3.1) для оценки характеристики прочности и пластичности жаропрочных материалов. Оценим состоятельность уравнения типа (3.7) и возможность использования его для анализа общих закономерностей ползучести ряда жаропрочных сталей стационарного энергомашиностроения. Для этого проанализируем данные математической обработки кривых ползучести сталей разных марок. Как отмечалось выше, много образцов стали 15Х11МФБЛ испытано с измерением деформации при разных температурах. Обработкой первичных кривых ползучести, проведенной в соответствии с требованиями отраслевого стандарта, получено следующее уравнение состояния типа (3.7)  [c.84]

Чижик А. А. Исследование характеристик жаропрочности стали 20Х12ВНМФ при испытаниях большой продолжительности 70 000— 100000 ч // Прогнозирование прочности материалов и конструктивных элементов машин большого ресурса. Киев Паукова думка. 1977. С.22-30.  [c.266]

В книге рассмотрены вопросы сопротивления жаропрочных материалов неизотермическому малодикловому нагружению — термической усталости. Приведены экспериментальные данные по термической усталости жаропрочных сталей, никелевых деформируемых и литых сплавов, используемых в основном в деталях газотурбинных установок. Освещены роль технологических факторов (режимов литья и термообработки, покрытий, пайки и др ). а также влияние основных параметров циклического нагружения — температуры, частоты, нагрузки. Определены критерии прочности при термоусталостном нагружении при высоких (до 1050 С) температурах и предложены расчетные уравнения для прогнозирования долговечности. Изложены методы испытаний, приведены схемы испытательных машин.  [c.2]

Однако следует иметь в виду, что это относится к обычным жаропрочным сталям и сплавам на железной, никелевой или кобальтовой основе, критический интервал хрупкости которых располагается в области отрицательных температур. Испытания на термоусталость в температурном диапазоне 20ч 1200°С некоторых сплавов на основе хрома, у которых температура хрупкого перехода сотавляла 30—50° С, показали, что все разрушения происходят при нижней температуре цикла, когда пластичность материала невелика. Вместе с тем при верхней температуре цикла эти сплавы имеют высокую пластичность. Для таких материалов деформационный критерий термоусталостной прочности должен учитывать минимальное значение предельной пластичности.  [c.126]

В то же время высокие требования к качеству изделий из нержавеющих, жаропрочных сталей часто требуют 100%-ного контроля механических свойств. Однако в силу существующих методик прямых испытаний механических свойств 100%-но можно контролировать только твердость, а предел текучести, предел прочности, относительное удлинение и сужение —только выборочно на образцах по твердости — по специальным таблицам. Но на мноТих изделиях даже твердость, по Роквеллу или Бринеллю, не всегда удается замерить — это детали сложной конфигурации, большие по весу и объему сварные изделия. Тогда прибегают к сравнительным методам (например, по методу Польди). Вот почему для этого класса сталей важны разработка и внедрение неразрушающих методов контроля механических свойств и качества термической обработки.  [c.94]

В зависимости от соотношения влияния этих процессов в данных условиях испытания возможно как упрочнение, так и разупрочнение предварительно деформированного металла. При повышении температуры и продолжительности испытания роль и значение процессов разупрочнения возрастает по сравнению со значением деформационного упрочнения, что в случае наклепа приводит к понижению характеристик усталости и жаропрочности сталей и сплавов по сравнению с ненаклепанным состоянием. На характер зависимостей длительной прочности, ползучести и сопротивления усталости от предварительного наклепа влияет субструктура, возникающая в зернах в результате предварительной деформации металла и отжига.  [c.200]


Смотреть страницы где упоминается термин Прочность жаропрочных сталей : [c.8]    [c.289]    [c.292]    [c.109]    [c.251]   
Справочник азотчика том №2 (1969) -- [ c.277 ]



ПОИСК



Длительная прочность жаропрочных аустенитных сталей зарубежного производства

Длительная прочность жаропрочных ферритных сталей зарубежного производства

Жаропрочность

Жаропрочность сталей

Жаропрочные КЭП

Пайка сталей и сплавов жаропрочных — Защитные атмосферы 240 — Прочность

Пайка сталей и сплавов жаропрочных — Защитные атмосферы 240 — Прочность в зависимости от термической обработки и от размера зазора 235, 236 — Припои

Пайка сталей и сплавов жаропрочных — Защитные атмосферы 240 — Прочность соединений жаропрочных сплавов, паянных серебряными припоями 242 — Припои 240—244 —Способы 242, 244 — Флюсы

Сварные соединения из сталей хромоникелевых жаропрочных Прочность и сопротивление усталости

Стали аустенитные жаропрочные иую прочность сталей с интерметал

Сталь жаропрочная

Сталь жаропрочная Предел длительной легированная — Прочность механическая — Характеристики

Сталь жаропрочная Предел длительной углеродистая — Прочность механическая— Характеристики

Сталь жаропрочная — Предел длительной прочности 433 —Характеристики механические

Сталь жаропрочная — Предел длительной прочности 433 —Характеристики механические характеристики

Сталь прочность

Сталя жаропрочные



© 2025 Mash-xxl.info Реклама на сайте