Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Распространение возмущений в потоке. Характеристики

РАСПРОСТРАНЕНИЕ ВОЗМУЩЕНИЙ В ПОТОКЕ. ХАРАКТЕРИСТИКИ  [c.101]

В лаборатории турбомашин МЭИ введены в эксплуатацию различные стенды влажного пара, ориентированные на экспериментальное изучение следующих основных задач I) механизма конденсации в равновесных и неравновесных течениях влажного пара при больших скоростях и, в частности, скачковой конденсации 2) механизма и скорости распространения возмущений в двухфазной среде и условий перехода через скорость звука 3) основных свойств дозвуковых и сверхзвуковых течений в каналах различной формы с подробным изучением волн разрежения и скачков уплотнения в эту группу включаются исследования основных энергетических и расходных характеристик сопл, диффузоров и других каналов 4) двухфазного пограничного слоя и пленок, образующихся на поверхностях различных форм 5) течений влажного пара в решетках турбин (плоских, прямых и кольцевых) с подробным изучением структуры потока, углов выхода, коэффициентов расхода и потерь энергии 6) структуры потока и потерь энергии в турбинных ступенях, работающих на влажном паре, с подробным изучением оптимальных условий сепарации влаги из проточной части и явлений эрозии.  [c.388]


В сверхзвуковом потоке, т, е. при w4> с, дифференциальное уравнение (9.75) решается методом характеристик. Чтобы дать понятие об этом методе, рассмотрим распространение слабых возмущений в сверхзвуковом потоке газа. Слабые возмущения, как мы знаем из 9.3, распространяются в газе со скоростью звука. Это означает, что если в данной точке потока газ подвергается слабому возмущению, то влияние этого возмущения распространяется только вниз по течению, так что возмущенная зона будет представлять собой вначале конус с вершиной в точке, где возникло возмущение. Для угла раствора этого конуса 2а справедливо соотношение sin а == IW, а на боковой поверхности конуса составляющая скорости газа, перпендикулярная к поверхности конуса (или, что то же самое, к линии слабых возмущений), равна местной скорости звука, т. е. Wn = с если бы это было не так, то линии слабых возмущений не занимали бы устойчивого положения. Поверхность, ограничивающую область потока, куда достигает исходящее из данной точки возмущение, называют характеристической поверх-ностью.  [c.329]

В предыдущих главах 2 и 3 было показано, как при воздействии слабых акустических возмущений можно осуществлять управление аэродинамическими и акустическими характеристиками дозвуковой турбулентной струи. В настоящей главе рассмотрены некоторые результаты экспериментального исследования воздействия интенсивных периодических и, в частности, акустических возмущений на аэродинамические характеристики турбулентной струи. Мы здесь не будем касаться энергетической выгодности такого способа управления турбулентными струями. Отметим лишь, что рядом авторов были выполнены экспериментальные исследования характеристик турбулентных струй с высокой интенсивностью периодического возбуждения. Однако сравнение результатов этих исследований затруднено тем обстоятельством, что периодический во времени закон модуляции расхода в струе определялся конструктивными особенностями устройств (прерывателей потока), создающих пульсации скорости в струе. Это обстоятельство затрудняет обобщение или сопоставление результатов опубликованных работ, так как структура течения в возбужденной струе, по-видимому, зависит от спектрального состава периодических пульсаций скорости и масштаба турбулентности в выходном сечении сопла. Отмеченное обстоятельство подтверждается существенными отличиями закономерностей распространения сильно возбужденных турбулентных струй, установленными в работах различных авторов [4.2,4.4,4.6,4.7,4.9].  [c.129]


Как уже указывалось выше, число работ, содержащих различного рода приближенные методы расчета отрывных и безотрывных сверхзвуковых течений с распространением возмущений вверх по потоку с учетом эффектов взаимодействия, чрезвычайно велико. Однако большая их часть относится к небольшому числу основных направлений. Одно из направлений связано с использованием интегральных уравнений пограничного слоя. Задача об отрывном или безотрывном взаимодействии области вязкого течения с внешним невязким сверхзвуковым потоком сводится к интегрированию системы нелинейных обыкновенных дифференциальных уравнений первого порядка. Эти уравнения получаются формальным интегрированием уравнений пограничного слоя в поперечном направлении. В них входят определенные интегральные характеристики пограничного слоя толщины вытеснения, потери импульса, энергии и т. п. Кроме того, добавляется соотношение, определяющее связь между распределением давления в невязком сверхзвуковом потоке и толщиной вытеснения области вязкого течения. Информация о формах профилей скорости и энтальпии в пограничном слое оказывается утерянной и должна быть постулирована в виде каких-либо семейств кривых, зависящих от такого же числа свободных параметров, сколько имеется уравнений для определения их распределения по продольной координате. Для получения удовлетворительных результатов важное значение имеет выбор семейства профилей распределения параметров поперек пограничного слоя. Единственным критерием качества является сопоставление результатов с экспериментальными данными.  [c.11]

Распределения характеристик течения, когда массообмен происходил на поверхности крыла при 1 1 0,75, т.е. начинался в области закритического течения, представлено на рис. 7.39-7.43 кривыми 3 и 7. Распространение возмущений вверх по потоку от начала области как вдува (кривая 3), так и отсоса (кривая 7) ограничено двумя-тремя шагами разностной сетки (Аг = 0,025), что является естественным, учитывая фактическое наличие второй производной от толщины пограничного слоя по поперечной координате в уравнениях (7.79), (7.81), (7.82). Распределение как давления, так и других функций течения в области закритического течения в сторону к плоскости симметрии крыла является уже не автомодельным. В этих случаях переход происходит не на автомодельных решениях. Координата перехода, определяемая из соотношения (7.74) для текущих функций течения, смещается к передней кромке в случае вдува — крестик на кривой 3. Для течения с отсосом переход задерживается и область закритического течения увеличивается (кривая 7). Существенно немонотонный характер изменения величин (г) и А (г) в случае отсоса (кривые 7 на рис. 7.39, 7.40) приводит и к немонотонному поведению коэффициентов напряжения трения и теплового потока по поперечной координате. Следует отметить достаточно сильное изменение величин т , и Тд в окрестности начала области массообмена  [c.357]

Образующаяся за отошедшей волной дозвуковая зона имеет, как правило, ограниченную протяженность, т. е. является локальной. Спереди она ограничена поверхностью головной волны, а сзади— поверхностью тела и поверхностью, на которой вновь достигается скорость звука—звуковой поверхностью (подробнее о трансзвуковых течениях будет сказано в 22). В области за звуковой поверх-, ностью скорость потока вновь сверхзвуковая. Из некоторой части этой области возмущения могут проникать в дозвуковую область, влияя на течение в ней и, в частности, влияя на форму ограничив вающей ее спереди головной волны. На рис. 3.14.11 показаны случаи возможного при разных значениях числа Мх взаимного расположения в области за головной волной звуковой линии (сплошные кривые) и акустических характеристик двух семейств (штриховые и пунктирные кривые) при обтекании плоских контуров и осесимметричных тел. Очевидно, что область зависимости течения в дозвуковой зоне простирается на контуре тела до точки В, лежащей в первых двух случаях в сверхзвуковой зоне. Возмущения формы контура правее точки В не влияют на течение в дозвуковой зоне, так как распространение этих возмущений ограничено спереди характеристикой первого семейства, идущей из точки 5 и не попадающей на звуков  [c.305]


М вдоль цилиндрического участка. В начальной части цилиндрического участка М уменьшается (течение сжатия), затем увеличивается, а далее вновь уменьшается, что соответствует колебательному характеру распространения малых возмущений в соплах и решению, представленному в гл. 3. Наличие области сжатия приводит к пересечению характеристик 2-го семейства, выходящих из точек контура, и образованию ударных волн. Значительное торможение потока в начале цилиндрического участка может привести к отрыву пограничного слоя в этой области. Течение на  [c.156]

Распределение величины Д , связанной с толщиной вытеснения, на фиг. 2 (кривая У) показывает ее уменьшение в области 0.13 < 2 < 0.75, что объясняется увеличением давления. Это приводит к подтормаживанию потока в поперечном направлении, а затем и возникновению в нижней части пограничного слоя течения с и > 0. Непрерывный вдув (кривая 2) и отсос (5) естественно приводят соответственно к увеличению и уменьшению толщины вытеснения. Отход кривых 5 и 6 от кривой / особенно наглядно показывает отсутствие распространения возмущений вверх по координате 2 от точки 2 = 0.75 в области закритического течения. В то же время массообмен, заданный в докритической области (кривые 4 и 7), влияет на характеристики течения во всей этой области.  [c.183]

Наибольшее распространение метод моментов получил при исследовании структуры потоков в аппаратах химической технологии. Известно, что гидродинамические характеристики (такие, например, как коэффициенты перемешивания) целесообразно определять в нестационарных режимах, исследуя отклики объекта на возмущения входных параметров, а тепломассообменные характеристики (такие, например, как коэффициенты тепло-и массопередачи) удобнее определять в стационарных условиях работы аппарата.  [c.279]

Приведенные ниже уравнения позволяют рассчитывать изменение параметров во времени для равновесной сжимаемой среды, движущейся в одномерном нестационарном потоке. В основу решения положен известный метод характеристик. Решение уравнений производится разностным методом в его первом нелинейном приближении. Подробно рассмотрены различные типы граничных условий, позволяющие применить развитый расчетный аппарат для решения различных конкретных задач. Полученные решения содержат в себе как частный случай решения для динамики неподвижного теплоносителя и для квазистационарного течения теплоносителя. Эти решения могут быть получены из общего решения для нестационарного потока путем наложения определенных ограничений на скорости распространения трех волн возмущения прямой, обратной и транспортной.  [c.12]

Система уравнений (1.46) - (1.48) совместно с (1.39) позволит найти изменения параметров во времени и по длине одномерного потока сжимаемой среды. Такова она будет и для идеального газа, и для реальной однофазной среды, и для двухфазной смеси. Различие будет лишь в способах определения скорости распространения волны возмущения и коэффициента Грюнайзена. Физический смысл и способы определения этих величин рассмотрены в [55]. Там же достаточно подробно изложен конечно-разностный метод решения уравнений гидродинамики с использованием метода характеристик.  [c.16]

Как уже отмечалось во вводной лекции, свойство сжимаемости газа проявляется в конечной скорости распространения малых возмущений (скорости звука) и, как следствие, в существенном изменении свойств сверхзвукового стационарного течения по сравнению с дозвуковым потоком. Изучение сверхзвуковых течений является основным предметом газовой динамики. На примере трансзвукового уравнения Эйлера-Трикоми мы уже видели, что в сверхзвуковом случае имеем уравнение гиперболического типа с действительными характеристиками. Сейчас мы покажем, что это свойство сохраняется при любой сверхзвуковой скорости.  [c.137]

В лаборатории турбомашин МЭИ используются различные стенды влажнога водяного пара, ориентированные на изучение 1) условий подобия и моделирования двухфазных течений в различных каналах и в элементах проточной части турбин АЭС 2) механизмов скачковой и вихревой конденсации пара в соплах каналах и решетках турбин при дозвуковых и сверхзвуковых скоростях 3) влияния периодической нестационарности и турбулентности на процессы образования дискретной фазы, взаимодействия фаз и интегральные характеристики потоков 4) двухфазного пограничного слоя и пленок в безградиентных и градиентных течениях 5) механизма и скорости распространения возмущений в двухфазной среде, а также критических режимов в различных каналах в стационарных и нестационарных потоках 6) основных свойств и характеристик дозвуковых и сверхзвуковых течений в соплах, диффузорах, трубах, отверстиях и щелях 7) влияния тепло- и массообмена на характеристики потоков в различных каналах 8) течений влажного пара в решетках турбин с подробным изучением структуры потока и газодинамических характеристик 9) структуре потока, потерь энергии и эрозионного процесса в турбинных ступенях, работающих на влажном паре 10) рабочего процесса двухфазных струйных аппаратов (эжекторов i и инжекторов).  [c.22]

Скорость распространения малых возмувдений или скорость звука является важной характеристикой потока сжимаемой среды. В зависимости от того, будут ли скорости движения частиц меньше или больше скорости звука, принципиально различными будут и происходяш,иев среде явления. Это может быть продемонстрировано на следующем простом и наглядном примере. Предположим, что из баллона большой емкости через сужающийся патрубок происходит истечение газа в некоторую камеру. Пусть вначале разность давлений между баллоном и камерой была невелика и скорость истечения сквозь патрубок не превосходила скорости звука. Будем теперь медленно понижать давление в камере тогда скорость истечения начнет повышаться. Создаваемые в камере возмущения (уменьшения) давления будут распространяться против течения из камеры через патрубок в баллон до тех пор, пока скорость в выходном сечении патрубка не достигнет скорости звука. После этого возмущения давления не смогут уже проникнуть в баллон, так как они будут сноситься потоком, имеющим ту же скорость, что и скорость распространения возмущений в газе. Продолжающееся понижение давления в камере не отразится на явлении истечения, скорость которого будет оставаться постоянной и равной скорости звука в выходном сечении патрубка. Это явление носит наименование запирания потока. В дальнейшем мы встретимся и с другими, столь же своеобразными явлениями в потоках сжимаемой среды — газа.  [c.106]


В предыдущем разделе на частном примере треугольного крыла обнаружена аналогия между распространением возмущений в сверхкритическом трехмерном пограничном слое и сверхзвуковом потоке невязкого газа. Показано, что при изменении стреловидно сти крыла можно иметь аналогию с обтеканием крыльев сверхзвуковым потоком невязкого газа, имеющих сверхзвуковые или дозвуковые передние кромки. В случае режима сильного гиперзвукового взаимодействия — это наличие вблизи передних кромок закритических областей при малых значениях угла стреловидности передней кромки или их отсутствие при больших углах стреловидности. Естественно попытаться построить характеристические поверхности и соответствующие соотношения в общем случае (помимо характеристик, связанных с поверхностями тока, см., например, [Wang К., 1971]).  [c.317]

МЕРЦАНИЙ МЕТОД — метод определения параметров турбулентной среды и источника, к-рым просвечивается среда, на основе измерения статистич. характеристик флуктуаций потока излучения, вызванных модуляцией волн неоднородностями показателя прело.м-ленин. Метод базируется на теории распространения волн в средах с ноказателем ореломления, являющимся случайной ф-цией координат г (см. Распространение радиоволн в случайно неоднородных средах). Развитие возмущений поля волны начинается с развития фазовых возмущений, затем эффекты фокусировки, дифракции и интерференции приводят к появлению флуктуаций потока — мерцаниям (см. Мерцания радиоволн). Различают два режима мерцаний режим слабых и режим сильных (насыщенных) мерцаний. Движение среды относительно луча зрения преобразует пространств, флуктуации во временные.  [c.99]

Ркключая из (5.86) dpIdQ, a затем с помощью (5.8в) dp/dQ, получаем Св—а. Последнее означает, что отклонение потока в волне разрежения происходит таким образом, что составляющая скорости, нормальная к радиусу (характеристике), равна скорости звука в данной точке. Этот вывод в более общем случае уже получен ( 5.1) из анализа характеристик и картины распространения слабых возмущений в сверхзвуковом потоке (рис. 5.1).  [c.118]

ОбратихМ внимание на следующее обстоятельство. В сверхзвуковом потоке всякое выравнивание начальных возмущений происходит путем многократного взаимодействия звуковых волн или характеристик. Но в ударном слое тонкого (как заостренного, так и притупленного) тела местные числа очень велики (см. 8.1), поэтому область взаимодействия или отражения возмущений может быть достаточно протяженной. Кроме того, из 3.5 следует, что возмущения, дойдя до скачка уплотнения, при этих условиях отражаются от него весьма слабо. Поэтому основное выравнивание возмущений происходит в сравнительно разреженном высокоэнтропийном слое благодаря их отражению от более плотного ударного слоя. В высокоэнтропийном слое числа существенно меньше, чем в ударном, практически течение в нем умеренно сверхзвуковое (см. рис. 11.2). Все это определяет характер распространения возмущений, показанный на рис. 11.1.  [c.255]

Первое обстоятельство связано с характерным для этого режима эффектом распространения возмущений вверх по потоку на расстояния, сравнимые с продольным размером обтекаемого тела. Это приводит к тому, что части потока, обтекающие пластину сверху и снизу, испытывают взаимное эжектирующее влияние, приводящее к разгону течения в окрестности задней кромки. В связи с этим использование автомодельного решения уравнений гиперзвукового пограничного слоя [Хейз УД., Пробетин Р.Ф., 962], справедливого для обтекания полубе сконечной пластины, при расчете аэродинамических характеристик пластины конечной длины является неоправданным. Получение корректного решения возможно лишь с учетом течения в следе.  [c.293]

Появление возвратных токов в пограничном слое обеспечивает дополнительный кон-вективный механизм распространения возмущений вверх по потоку Существенно, что при этом меняются и характеристики распространения возмущений давления.  [c.328]

Метод характеристик обладает определенными преимуществами перед другими численными методами, поскольку, как правило, устойчив. На характеристических линиях упрощаются уравнения, количество независимых переменных уменьшается на единицу. Граничные точки, точки на ударной волне и свободной границе рассчитываются независимо друг от друга, и поэтому в отличие, скажем, от метода сеток здесь отпадает необходимость в использовании прогонки. Но главное преимущество метода характеристик заключается в том, что в нем учитывается распространение возмущений это позволяет строго учитывать такие явления, как центриро-ганные волны разрежения, висячие ударные волны, контактные поверхности. И, наконец, в методе характеристик обычно выстраиваются линии тока, вдоль которых интегрируются уравнения, описывающие протекающие в потоке физико-химические процессы.  [c.127]

На рис. 3.12 представлены кривые а = /(со), соответствующие различным значениям числа М набегающего потока, построенные для воздуха к = 1,4). Как видим, каждому значению числа М отвечает некоторое предельное отклонение потока (<в = Ютах). Так, при М = 2 поток может быть отклонен не более чем на угол omai = 23°, при М = 3 — на Штах = 34°, при М = = 4 — на Штах = 39°. Даже при бесконечно большой скорости (М = оо) ноток можно отклонить максимум на угол Штах = 46°. Наличие такого ограничения в отклопенип потока после скачков уплотнения является вполне естественным фактом, ибо как при бесконечно слабом скачке, т. е. когда угол а равен углу распространения слабых возмущений, а образующая конуса возмущения является характеристикой, так и при наиболее сильном — прямом скачке угол отклонения потока становится равным нулю, следовательно, кривые (о = /(а) имеют максимумы.  [c.134]

При уменьшении угла конуса до значений, меньших J, между волной детонации, остающейся неизменной и соответствующей детонации Ченмена-Жуге, и течением сжатия вблизи поверхности конуса возникает коническая зона разрежения, которая замыкается скачком уплотнения. При уменьшении угла конуса ширина зоны разрежения возрастает, а интенсивность замыкающего скачка сначала увеличивается, а затем вновь начинает уменьшаться. При значении = О ширина зоны разрежения становится наибольшей, а замыкающий ее скачок уплотнения вырождается в характеристику. При этом за конической зоной разрежения поток остается поступательным, и направленным вдоль оси симметрии. Такой предельный случай соответствует распространению детонационной волны от точечного поджигающего источника и описывает также обтекание произвольного тела конечных размеров, в том числе конуса при в > тах, потоком ДСТОНИ-рующего газа на больших расстояниях от тела. В соответствии с тем, что в конической волне разрежения Уп > а, возмущения, идущие от поверхности конуса вдоль характеристик, не могут проникнуть в эту  [c.32]


Смотреть страницы где упоминается термин Распространение возмущений в потоке. Характеристики : [c.3]    [c.15]    [c.205]    [c.165]    [c.91]    [c.120]   
Смотреть главы в:

Гидроаэромеханика: Учебник для вузов.  -> Распространение возмущений в потоке. Характеристики



ПОИСК



Возмущение

Возмущение потока

Распространение возмущения



© 2025 Mash-xxl.info Реклама на сайте