Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нагрузочная способность зубчатого зацепления

НАГРУЗОЧНАЯ СПОСОБНОСТЬ ЗУБЧАТОГО ЗАЦЕПЛЕНИЯ  [c.256]

Расчетом на прочность определяют размеры зубчатой передачи, при которых не возникнет опасность повреждения зубьев колес. Это возможно при взаимосвязанном расчете прочности и геометрии зацепления, ибо с изменением геометрии меняется и нагрузочная способность зубчатого зацепления.  [c.134]

Б о р о в и ч Л. С. Исследование влияния геометрии зацепления на нагрузочную способность зубчатых и червячных передач. Труды ЦНИИТМАШ,  [c.476]


Повышение изгибной выносливости и долговечности зубчатых передач вследствие поверхностного упрочнения переходной поверхности у ножки зуба широко используется в производстве приводов. Поверхностное упрочнение зубьев позволяет повысить нагрузочную способность зубчатых передач примерно в 4-5 раз, тогда как за счет улучшения геометрии и качества сборки ее можно увеличить только в 1,5-2 раза. Вместе с тем пока еще отсутствуют инженерные методы оценки степени упрочнения и учета ее влияния на предел изгибной выносливости зубьев и долговечность зацепления В существующих методиках расчета зубчатых передач на прочность (ГОСТ 21354-84, СТ СЭВ 5744-86, РТМ 2 Н45-1) выносливость зубьев, необходимую для предотвращения усталостного излома зубьев, устанавливают сопоставлением расчетного максимального напряжения в опасном сечении на поверхности с допускаемым напряжением определяемому с учетом величины предела выносливости зубьев при изгибе расчетного коэффициента запаса прочности 5 , и уточняющих коэффициентов  [c.105]

В 1954 г. в СССР М. Л. Новиковым было разработано зубчатое зацепление с круговыми профилями зубьев — рис. 8.49. Обладая рядом положительных качеств и в первую очередь повышенной нагрузочной способностью, передачи Новикова получили широкое распространение. В СССР они стандартизованы. Их изготовляют как передачи обш,его, так и специального назначения.  [c.164]

Достоинства большое передаточное число в одной ступени, а также малые габариты и масса. Снижение массы (обычно в 2...4 раза и более) объясняется следующими причинами распределением нагрузки между сателлитами, благодаря чему нагрузка на зубья в каждом зацеплении уменьшается в несколько раз широким применением зубчатых колес с внутренним зацеплением, обладающих повышенной нагрузочной способностью малой нагрузкой на опоры. Планетарные передачи работают с меньшим шумом, что связано с повышенной плавностью внутреннего зацепления и меньшими размерами колес. Недостатки повышенные требования к точности изготовления и монтажа резкое снижение к. п. д. передачи с увеличением передаточного числа.  [c.368]

Отметим, кроме того, что в зацеплении у волновой передачи находится одновременно 25...30% от общего числа зубьев пары колес, что обеспечивает высокую кинематическую точность при меньшей (по сравнению с обычными зубчатыми) степени точности изготовления, высокую нагрузочную способность на единицу массы. Тем самым волновая передача наиболее полно удовлетворяет требованию снижения металлоемкости машин. Волновая передача отличается высокой плавностью и бесшумностью в работе. К числу неоспоримых преимуществ волновых передач относится возможность передачи механического движения в герметическое пространство или агрессивную среду.  [c.470]


В последние годы были сделаны попытки найти новые виды зубчатых зацеплений, обладающих, как говорят, значительной нагрузочной способностью. Около двадцати лет назад М. Л. Новиков предложил новое зубчатое зацепление с нагрузочной способностью в 1,7—1,8 раза большей, чем нагрузочная способность соответствующего ему по размерам эвольвентного зацепления. Новое зацепление можно проектировать при всех положениях осей колес при параллельных, пересекающихся и перекрещивающихся осях.  [c.70]

Передачи с жесткими звеньями могут передавать движение как за счет сил трения (фрикционные передачи), так и путем зацепления (зубчатые, гиперболоидные и другие передачи). Их применяют в широком диапазоне мощностей и скоростей движения. По сравнению с передачами гибкой связью они имеют меньшие габариты, высокую надежность и КПД, большую нагрузочную способность.  [c.289]

М. л. Новиковым разработано зубчатое зацепление с круговыми профилями зубьев (рис. 20.19), которое стандартизовано и благодаря повышенной нагрузочной способности получает все большее применение в машиностроении.  [c.337]

В цилиндрических колесах с прямыми зубьями соприкасание двух сопряженных профилей происходит по прямой, параллельной осям колес. Рассечем зубчатое колесо с прямыми зубьями на равные части плоскостями, перпендикулярными к оси колеса (рис. 232, а). Каждый из полученных дисков сдвинем один относительно другого на один и тот же угол. Если увеличить число ступеней до бесконечности, то получим колесо с винтовыми, или косыми, зубьями (рис. 232,6). Два сопряженных колеса должны иметь равные углы наклона р линии зуба. При внешнем зацеплении винтовая линия на одном колесе должна быть правой, а на другом - левой. Если два таких колеса привести в соприкасание, то одновременно в зацеплении будут находиться различные участки профилей, дуга зацепления возрастет на величину смещения зубьев по начальной окружности, т. е. увеличится коэффициент перекрытия ф , а это приведет к распределению нагрузки на несколько зубьев. В результате повысится нагрузочная способность, увеличится плавность работы передачи и уменьшится шум. Эти обстоятельства определили преимущественное распространение в современных передачах косозубых колес.  [c.253]

В книге систематизированы теоретические основы зацепления Новикова. Рассмотрены новые варианты зубчатых передач. Изложены вопросы кинематики, нагрузочной способности, энергетических потерь. Даны рекомендации по синтезу передач и модификации зацепления по динамическим критериям. Приведены данные по оптимальному выбору параметров, а также результаты исследования динамики быстроходных передач.  [c.128]

Вопросы синтеза зацеплений получили в последнее время значительное развитие. Особенно следует отметить появление нового метода синтеза зацеплений с точечным контактом, предложенного М. Л. Новиковым. Этот метод позволяет создавать новые виды зубчатых передач, которые при определенных условиях обладают более высокой нагрузочной способностью по сравнению с обычными эволь-вентными передачами.  [c.87]

В сечении А-А (см. рис. 11.8) косозубое колесо имеет эвольвентный профиль, обеспечивающий зацепление в косозубой передаче подобно зацеплению прямозубой эвольвентной передачи. В прямозубом колесе линия контакта зубьев параллельна оси цилиндра, в косозубом — линия контакта зубьев расположена под углом наклона р. Косозубые зубчатые передачи по сравнению с прямозубыми обладают большей нагрузочной способностью, плавностью работы, меньшим шумом, но наклон зубьев приводит к возникновению осевой силы, нагружающей опоры и валы передачи.  [c.240]

Редукторы ЦТН, также как и редукторы ЦДН, имеют зубчатые передачи с зацеплением Новикова, обладающие (по прочности рабочих поверхностей зубьев) значительно более высокой нагрузочной способностью. По данным Луганского завода им. Пархоменко, редукторы ЦТН могут нести нагрузку приблизительно в 2 раза большую, по сравнению с табличной нагрузкой редукторов ЦТШ с эвольвентным зацеплением.  [c.82]


В этом случае вместо зацепления получится зубчатое соединение. Такая передача будет иметь меньшие осевые габариты, чем передача, приведенная на схеме 2 табл. 11.1, но на 20...25 % меньший КПД и в 2 раза меньшую нагрузочную способность. На рис. 11.7 изображен общий вид такого редуктора. Левое зацепление является волновым зубчатым соединением.  [c.223]

Расчет нагрузочной способности цилиндрических зубчатых передач с внешним зацеплением  [c.68]

Задачей расчета зацепления является определение профиля и размеров зубьев, величины и формы деформирования гибкого колеса. Критериями для оценки возможных параметров зацепления служат нагрузочная способность, КПД, долговечность. Синтез зацепления простых зубчатых передач основан на анализе относительного движения зубьев при вращении колес. Естественно, что и синтез зацепления волновых зубчатых передач не может быть выполнен без такого анализа.  [c.157]

Для большинства автомобилей одинарные конические передачи имеют зубчатые колеса с гипоидным зацеплением (рис. 16.18,6). Гипоидные передачи по сравнению с простыми обладают рядом преимуществ они имеют ось ведущего колеса, расположенную ниже оси ведомого, что позволяет опустить ниже карданную передачу, понизить пол кузова легкового автомобиля. Вследствие этого снижается центр тяжести и повышается устойчивость автомобиля. Кроме того, гипоидная передача имеет утолщенную форму основания зубьев шестерен, что существенно повышает их нагрузочную способность и износостойкость. Но это обстоятельство обусловливает применение для смазки шестерен специального масла (гипоидного), рассчитанного для работы в условиях передачи больших усилий, возникающих в контакте между зубьями шестерен.  [c.201]

В книге приводятся краткие сведения о трении в условиях смазки и зубчатом зацеплении М. Л. Новикова. Обладая значительно большей нагрузочной способностью, чем обычные передачи (при равных условиях), зацепление Новикова успешно внедряется в промышленность. В связи с этим необходимо ознакомить студентов с принципиальными особенностями этого вида зубчатых передач.  [c.3]

К достоинствам зубчатых передач Новикова относятся более высокая контактная прочность зубьев, чем в передачах с эвольвентным зацеплением при равных условиях, что обусловливает большую их нагрузочную способность меньший износ широкая возможность варьирования параметрами, определяющими качество зацепления и высоту зуба, которая в условиях точечного контакта может быть весьма малой меньшие габариты, вес и стоимость передачи возможность использования менее прочных материалов меньший шум сравнительно пониженные требования к точности изготовления.  [c.124]

Расчет зубьев зацепления М. Л Новикова на контактную прочность производят по формулам, аналогичным расчетным формулам на контактную прочность зубьев эвольвентного зацепления (см. 56), но с учетом их большей нагрузочной способности. На основании опытных данных несущую способность зубьев зацепления М. Л. Новикова по контактной прочности при г , = 124-25 принимают в 1,75ч-2 раза больше, чем для эвольвентных косых зубьев. Соответственно этому расчет на контактную прочность зубьев стальных зубчатых колес цилиндрических передач с зацеплением М. Л. Новикова производят по формулам п р о е к т н ы й  [c.264]

Скольжение в зацеплении волнового зубчатого соединения снижает КПД и нагрузочную способность этих передач. По данным [37], допускаемая нагрузка уменьшается примерно в 2 раза по сравнению с простыми волновыми передачами, ср. табл. 11.1 и табл. 11.2. КПД передач с волновым зубчатым соединением характеризуется графиками на рис. 8.7, а, б. На рис. 8.7, а изображен график передачи с  [c.153]

Конические передачи сложнее цилиндрических в изготовлении и монтаже. Для нарезания конических зубчатых колес требуются специальные инструмент и станки. Выполнить коническое колесо с той же степенью точности труднее, чем цилиндрическое. В коническом зацеплении увеличивается неравномерность распределения нагрузки по длине зуба, здесь значительны осевые силы, наличие которых усложняет конструкции опор. Все это приводит к тому, что по опытным данным нагрузочная способность конической зубчатой передачи составляет 85% по сравнению с цилиндрической. Но несмотря на эти недо-  [c.180]

В эвольвентном зацеплении взаимодействие рабочих поверхностей зубьев происходит по прямой линии. Поэтому при неточности взаимного расположения колес или их деформации под нагрузкой плотность контакта зубьев становится неравномерной, что приводит к концентрации дав.оений на определенных участках контактных линий. Кроме того, радиусы кривизны рабочих поверхностей зубьев, которые определяют нагрузочную способность зубчатого механизма, зависят от диаметра основного цилиндра колеса чтобы увеличить радиусы кривизны, нужно увеличивать диаметры колес. Для того, чтобы избежать указанных недостатков, применяют зацепление с теоретически точечным контактом взаимодействующих зубьев, который за счет придания зубьям соответствующей формы под нагрузкой превращается в контакт по площадке.  [c.119]

Например, при испытаниях тяжелонагруженных высших кинематических пар, работоспособность которых определяется контактно-гидродинамической задачей, для непрерывной регистрации весового износа деталей работающей машины (в частности, зубчатых передач), особенно при переходах от без-ызносных режимов к изнашиванию и заеданию, других методов нет. В то же время разработка контактно-гидродинамической теории смазки — первоочередной задачи науки в области передач зацеплением [1] —и использование ее в инженерном деле представляют наиболее эффективный путь к резкому повышению износостойкости и нагрузочной способности зубчатых передач, поскольку другие пути (конструкционные и технологические), в основном, уже исчерпаны [2]. В более общем плане обеспечение практически безызносных режимов следует рассматривать как основное средство увеличения срока службы деталей машин и времени эксплуатации всей машины до первого капитального ремонта. Однако существующие решения контактно-гидродинамической задачи [3, 4, 5], представ-  [c.267]


Погрешности зацепления, определяемые в основном качеством изготовления, вызывают нарушение распределения нагрузки по высоте и ширине зуба, а также между отдельными зубьями, последовательно входящими в зацепление. На нагрузочную способность зубчатых колес влияют ошибки основного шага, погрешности профиля, шероховатость рабочих поверхностей зубьев и погрешность направления зуба. Ошибка по основному шагу вызывает изменение в распределении нагрузки между отдельными зубьями, последовательно входящими в зацепление. В том случае, когда в зацеплении находятся два зуба (одного колеса) и один из зубьев смещен вперед, а другой — назад относительно их теоретического положения, смещенный вперед зуб оказывается более нагруженным по сравнению с зубом, смещенным назад. В результате контактные давления (напряжения) на первом зубе выше, чем на втором. На рис. 125, а показано изменение контактного напряжения при перемещении точки контакта вдоль линии зацепления для идеального колеса (ошибка основного шага [е = = 0). Эта зависимость еще раз показана сплошной линией на рис. 125, б. Рассмотрим случай, когда второй из трех, изображенных на рисунке зубьев, смещен назад на величину fe относительно левого зуба. При этом на участке линии зацепления ( 151), когда в зацеплении находятся одновременно два зуба одного колеса, этот зуб воспринимает меньшую нагрузку и контактные напряжения на нем на участке ЕхВх ниже, чем у идеального колеса. На участке 5)52, где в зацеплении находится один зуб, погрешность 1е никакого значения не имеет. На участке В2Е2 нагруз-  [c.125]

Рассмотренная схема движения зубьев позволяет понять, что волновая передача может обеспечить одновременное з(щепление большого числа зубьев. Теоретически дуга зацепления может распространяться от б до Л и от й до Л. Или число зубьев в одновременном зацен-ле1ши составляет 50% от г . Например, при ij g=100, z =200 или 100 зубьев в одновременном зацеплении вместо 1...2 в простых передачах. Это одно из основных преимуществ волновых зубчатых передач. Оно обеспечивает им высокую нагрузочную способность при малых габаритах.  [c.194]

Достоинством планетарных передач являются широкие кинематические возможности, позволяющие использовать передачу как понижающую с большими передаточными отношениями и как повышающую. Кроме того, планетарные передачи имеют малые габариты и массу по сравнению со ступенчатой зубчатой передачей с тем же передаточным отношением. Это объясняется тем, что а) мощность передается по нескольким потокам и нагрузка на зубья в каждом зацеплении уменьшается б) при симметричном расположении сателлитов силы в передаче взаимно уравновешиваются и нагрузки на опоры входных и выходных валов невелики, что упрощает конструкцию опор и снижает потери в) внутреннее зацепление, имею1цееся в передаче, обладает повышенной нагрузочной способностью по сравнению с внешним зацеплением. Недостатком планетарных передач являются повышенные требования к точности изготовления и большой мертвый ход.  [c.230]

С целью увеличения нагрузочной способности зацепления круговинтовые зубья на каждом колесе выполняют с головкой и ножкой. Винтовые поверхности таких зубьев образуются аналогично указанному выше с помощью окружностей, перемещающихся по винтовым линиям на начальных окружностях колес. Головки зубьев выполняют с выпуклым профилем, ножки — с вогнутым, которые связаны между собой небольшим участком, очерченным переходной кривой (рис. 11.4). В таком зацеплении контактирование зубьев происходит одновременно на головке и ножке зубьев каждого колеса пары. Благодаря этому увеличивается количество одновременно контактирующих зубьев. Точки контакта К К нг головках и ножках зубьев сдвинуты друг относительно друга на некоторое расстояние д, зависящее от угла наклона зубьев р и угла давления а. В этом механизме образуются две линии зацепления. Одна линия К К находится перед полюсом, другая КК — за полюсом. Каждая линия образуется перемещением общей точки контакта начальной ножки зуба одного зубчатого колеса с начальной головкой зуба парного зубчатого колеса. Этот вариант зацепления Новикова с двумя линиями зацепления называется дозаполюсным.  [c.123]

В. В. Шульцем была разработана геометрия зацепления и определена кривизна поверхностей зубьев ортогональных винтовых передач. Анализ полученных результатов позволил определить параметры кругового исходного контура для выпукло-вогнутых винтовых колес с заполюсным зацеплением, обладающих повышенной нагрузочной способностью. Отличительной способностью предложенного исходного контура являются малые угол давления в полюсе и величина радиуса кривизны, найденная из условия отсутствия подрезания. Вместе с этим было установлено, что приведенный главный радиус кривизны двух сопряженных поверхностей в пространственной зубчатой передаче с точечным касанием не зависит от кривизны исходного контура.  [c.29]

Расчет зубчатых цилиндрических эвольвентных передач. Это наиболее распространенный тип передач. Используют их при параллельных осях зубчатых колес в виде прямо-, косозубых и шевронных передач. По сравнению с прямозубыми косозубые передачи имеют более высокую нагрузочную способность, плавность вращения их основной недостаток — возникновение в зацеплении осевь1х усилий. Шевронные передачи, колеса которых состоят из двух жестко соединенных меЩу собой ко цов с противоположным-направлением линий зубьев, при обеспечении самоустанавливаемости зубчатых Колес лишены этих недостатков. Зубчатые передачи применяют с внешним или с внутренним зацеплением. Последние обладают повышенной нагрузочной способностью и меньшими размерами. Зубчатые колеса передач с внутренним зацеплением имеют одинаковые направления вращения, с внешним — противоположное.  [c.187]

Зубчатые передачи с высокой нагрузочной способностью бьии разработаны в СССР д-ром техн. наук М. Л. Новиковым (рис. 224). Зацепление представляет собой выпук.то-вогнутое кругловинтовое зацепление с начальным касанием в точке или по линии, расположенной в торцовом сечении колес. Передача Новикова между параллельными осями может быть выполнена только косозубой нли шевронной с углом Рд= 15-нЗО° (рис. 224, я). Выпуклый зуб делают иа шестерне (с меньшим числом зубьев), вогнутый - на колесе (с большим числом зубьев). При расчетах определяют  [c.279]

Наличие нескольких зон зацепления при большой многопарности контакха зубьев предопределяет относительно высокую нагрузочную способность и кинематическую точность волновых зубчатых передач. Если передаваемая нагрузка равномерно распределяется между зонами зацепления (при и >2), то силы в зонах зацепления не нагружают опоры звеньев С, f и к. Пространство внутри гибкого колеса может быть рационально использовано для—размешения опор тихоходного вала, быстроходных ступеней или двигателя.  [c.140]

Распространена норма [/] = (2 ч-З) 10 /, где I — расстояние между опорамрг. Для зубчатых передач часто принимают, что прогиб под серединой колеса не должен превышать 0,01—0,03 от модуля зубчатого зацепления. Напомним, что при больших прогибах возрастает концентрация нагрузки по длине зубьев и, как следствие, снижается нагрузочная способность передачи.  [c.371]


Суммарная длина контактных линий I, расположенных в поле зацепления косовубой передачи, влияет на ее нагрузочную способность. Величина / зависит от рабочей ширины зубчатого венца Ьщ, коэффициентов перекрытия ва н ер и угла наклона зуба на основном цилиндре Рь.  [c.140]

Благодаря большей нагрузочной способности передачи Новикова по сравнению с передачами эвольвентного зацепления более компактны и допускают большее передаточное отношение, а благодаря толстой масляной пленке между соприкасающимися зубьями уменьшается износ зубьев и повышается к. п. д. передачи. Недостаток передачи Новикова — значительное уменьшение контактной площадки при перекосах зубчатых колес и изменении межосевого расстояния в результате погрешностей изготовления и сборки или упругих деформаций передачи. При уменьшении контактной площадки вся нагрузка может оказаться сосредоточенной на небольшом участке длины зубьев и, следовательно, зубья могут быть сильно перегружены. Неправильное положение зубьев кюжет также вызвать дополнительные динамические нагрузки. Передачи Новикова благодаря компактности и хорошей приработке зубьев нашли применение главным образом при передаче больших постоянных нагрузок.  [c.200]

Независимо от конструкции генератора волн гибкое колесо при его нагружении изменяет свою начальную форму (сх. е). Это происходит из-за наличия зазоров и упругости элементов, взаимодействующих с гибким колесом. Если свободно расположенное гибкое колесо нагрузить с одного торца моментом Т, а с другого торца - силами 21 (силами в зацеплении зубчатых колес), то при закручивании оно на переднем торце будет выпучиваться в сторону действия сил (на сх. е показано пунктиром). Такое изменение формы колеса 1 ограничено с внещней стороны жестким колесом 2, а с внутренней стороны — генератором волн к. Гибкое колесо стремится при этом принять, форму жесткого колеса на участке 1/1 и форму генератора волн на участке ф/, (сх. ж). С увеличением момента, закручивающего гибкое колесо, указанные зоны увеличиваются. В соответствии с этим увеличивается число пар зубьев в зацеплении и уменьщается угол давления а, в генераторе волн (угол между вектором силы и вектором скорости щ). Благодаря многопарности зацепления (нагрузку могут передавать до 50% всех пар зубьев) нагрузочная способность волновой передачи выще, чем планетар1юй, представленной на сх. а. КПД волновой передачи выще, чем у передачи на сх. а, так как в зацеплении зубья почти не перемещаются при прилегании гибкого колеса к жесткому, а в генераторе волн угол меньше соответствующего угла давления в передаче с жесткими звеньями. При этом потери в зацеплении намного меньше, чем потери в генераторе волн, так как перемещения в зацеплении несоизмеримо малы по сравнению с перемещениями в генераторе  [c.56]

ПАССИВНЫЕ СВЯЗИ - связи в м., удаление которых не меняет характер движения м, в целом. П. могут быть полезными и вредными (избыточными). Первые позволяют повысить нагрузочную способность, жесткость, виброустойчивость, например, в многоопорных валах, подшипниках качения, многопарном зацеплении, м. параллельных кривошипов, зубчатых муфтах и т. п. Вторые приводят к дополнительным нагрузкам на звенья, вызывают необходимость повышения точности изготовления, затрудняют сборку м. (см. Избыточные связи).  [c.272]

В зависнмости от взаимного расположения геометрических осей валов зубчатые передачи бывают цилиндрические — при параллельных осях (см. рис. 6.1) конические—при пере-секарощчхся осях (рис. 6.2) винтовые — при скрещивающихся осях (рис. 6.3). Винтовые зубчатые передачи характеризуются повышенным скольжением в зацеплении и низкой нагрузочной способностью, поэтому имеют ограниченное применение.  [c.93]


Смотреть страницы где упоминается термин Нагрузочная способность зубчатого зацепления : [c.132]    [c.252]    [c.182]    [c.185]    [c.81]    [c.368]   
Смотреть главы в:

Прикладная механика  -> Нагрузочная способность зубчатого зацепления



ПОИСК



Зацепление зубчатое

Зубчатые Способность нагрузочная

Зубчатые зацепления—см. Зацепления

Зубчатые зацепления—см. Зацепления зубчатые



© 2025 Mash-xxl.info Реклама на сайте