Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения движения вязкой жидкости (уравнения Навье—-Стокса)

УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКОЙ ЖИДКОСТИ (УРАВНЕНИЯ НАВЬЕ—СТОКСА )  [c.82]

Дифференциальные уравнения движения вязкой жидкости (уравнения Навье—Стокса)  [c.92]

Уравнение движения вязкой жидкости (уравнение Навье — Стокса) получим из уравнения (24.10), если прибавим к его правой части (к сумме объемных сил) величину Таким образом.  [c.315]

Для определения этой силы рассмотрим уравнение движения вязкой жидкости уравнение Навье -Стокса [261].  [c.14]


Выражения (14) использовали для получения уравнений движения вязкой жидкости (уравнение Навье — Стокса), которые имеют следующий вид  [c.20]

Уравнение движения вязкой жидкости, (уравнение Навье-Стокса)  [c.74]

При рассмотрении уравнений движения вязкой жидкости (уравнений Навье-Стокса) отмечалось, что интегрирование их в большинстве случаев связано с непреодолимыми математическими трудностями. Однако известны и исключения. К числу их относится ламинарное течение между параллельными пластинами, одна из которых движется с какой-то скоростью и. Это так называемое течение Куэтта.  [c.86]

Движение вязкой жидкости. Уравнение Навье-Стокса. Число Рейнольдса. Формула Пуазейля. Ламинарное и турбулентное течение. Турбулентность атмосферы. Обтекание тел потоком жидкости. Формула Жуковского. Гидродинамическое подобие. Движение тела со сверхзвуковой скоростью.  [c.63]

Для типичных жидкостей уравнения Навье—Стокса применимы до тех пор, пока периоды движения велики по сравнению с молекулярными временами. Это, однако, не относится к очень вязким жидкостям. Для таких жидкостей обычные гидродинамические уравнения становятся неприменимыми уже при гораздо больших периодах движения. Существуют вязкие жидкости, которые в течение достаточно малых (но в то же время больших ito сравнению с молекулярными) промежутков времени ведут себя, как твердые тела (например, глицерин, канифоль). Аморфные твердые тела (например, стекло) можно рассматривать как предельный случай таких жидкостей с весьма большой вязкостью.  [c.188]

Пользуясь формулами (6), (17), (19) и (23), можно в дифференциальных уравнениях (14), с учетом т] = О, т. е. о = —р, заменить напряжения скоростями деформаций. При этом мы получим так называемые дифференциальные уравнения движения вязкой жидкости Навье — Стокса.  [c.68]

Луи Мари Навье (1785—1836 гг.)—видный французский инженер и механик, профессор Политехнической школы в Париже, член Парижской академии наук. Первым вывел (в 1824 г.) уравнения движения вязкой жидкости. Стокс — см. сноску в 7 гл. 2.  [c.88]

Диференциальное уравнение движения вязкой жидкости Навье-Стокса в векторной форме имеет вид  [c.129]

Уравнение (4-12) и соответствующие уравнения для направлений у и z называются общими уравнениями движения вязкой жидкости, или уравнениями Навье — Стокса. Уравнение движения пограничного слоя является частным случаем уравнений Навье — Стокса.  [c.41]


Для получения уравнений движения вязкой жидкости при малых числах Рейнольдса будем исходить из общей системы уравнений Навье — Стокса  [c.281]

Последнее граничное условие (г), = 0) весьма затрудняет решение задач, относящихся к движению вязкой жидкости. Оно вносит гораздо большие осложнения, нежели добавочные члены в уравнениях Навье-Стокса. Можно думать, что именно вследствие трудностей, сопряженных с необходимостью удовлетворить это дополнительное граничное условие (которого нет в теории идеальной жидкости), мы имеем до сих пор чрезвычайно мало точных решений уравнений Навье-Стокса.  [c.534]

Скачок уплотнения. Внутреннюю структуру скачка уплотнения, который в рамках гидродинамики идеальной жидкости заменяется разрывом, следует рассматривать на основе теории, учитывающей диссипативные процессы — вязкость и теплопроводность. В качестве простейшей модели можно использовать уравнение движения вязкой жидкости Навье — Стокса. Уравнения одномерного течения вязкого и теплопроводного газа — течения, стационарного в системе координат, связанной с фронтом ударной волны,— имеют вид  [c.212]

Закончив на этом описание основных физических явлений, возникающих при течениях с очень малой вязкостью, и изложив тем самым в самых кратких чертах теорию пограничного слоя, мы перейдем в следующих главах к построению рациональной теории этих явлений на основе уравнений движения вязкой жидкости. В настоящей части книги (в главе III) мы составим общие уравнения движения Навье — Стокса, а во второй части сначала выведем из уравнений Навье — Стокса путем упрощений, вытекающих из предположения о малой величине вязкости, уравнения Прандтля для пограничного слоя, а затем перейдем к интегрированию этих уравнений для ламинарного пограничного слоя. Далее, в третьей части книги, мы рассмотрим проблему возникновения турбулентности (переход от ламинарного течения к турбулентному) с точки зрений теории устойчивости ламинарного течения. Наконец, в четвертой части книги мы изложим теорию пограничного слоя для вполне развившегося турбулентного течения. Теорию ламинарного пограничного слоя можно построить чисто дедуктивным путем, исходя из дифференциальных уравнений Навье — Стокса для движения вязкой жидкости. Для теории турбулентного пограничного слоя такое дедуктивное построение до сегодняшнего дня невозможно, так как механизм турбулентного течения вследствие его большой сложности недоступен чисто теоретическому исследованию. В связи с этим при изучении турбулентных течений приходится в широкой мере опираться на экспериментальные результаты, и поэтому теория турбулентного пограничного слоя является, вообще говоря, полуэмпирической.  [c.53]

Основы учения о движении вязкой жидкости были заложены в 1821 г. французским ученым Навье и получили свое завершение в 1845 г. в работах Стокса (1819—1903), который сформулировал закон линейной зависимости напряжений от скоростей деформаций, представляющий обобщение простейшего закона Ньютона, и дал в окончательной форме уравнения пространственного движения вязкой жидкости, получившие наименование уравнений Навье — Стокса. Используя специальные молекулярные гипотезы относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1821 г. Навье, в 1831 г. Пуассон (1781—1846) и в 1843 г. Сен-Венаи (1797—1866). Урав " нения Навье —Стокса в криволинейных координатах в 1873 г. вывел Д. К- Бобылев.  [c.26]

Ламинарное движение жидкости в трубе имеет точное гидромеханическое решение, так как в этом случае легко могут быть применены уравнения движения вязкой жидкости Навье — Стокса, особенно в цилиндрических координатах. Здесь приведем более элементарный вывод закона распределения скоростей в ламинарном потоке, пользуясь законом И. Ньютона о трении внутри жидкости, выраженным уравнением Н. П. Петрова  [c.96]


Другой способ упрощения уравнений движения вязкой жидкости предложен Прандтлем и основан на использовании понятия пограничного слоя. Для плоского течения в декартовой системе координат уравнения Навье-Стокса приобретают вид  [c.20]

Сен-Венан рассматривал задачу о плоском деформированном пластическом состоянии и шёл по пути обобщения уравнений движения вязкой жидкости Навье-Стокса. Вскоре Леви 1 з] предложил это же условие для пространственной задачи пластичности, формально обобщив теорию пластичности Сен-Венана. Впрочем, идея такого условия пластичности принадлежит Кулону. Геометрический смысл уравнения  [c.54]

Перейдем теперь к приближенным методам решения уравнений движения вязкой жидкости. Решение упрощается в двух предельных случаях. Первый соответствует задачам, когда велика вязкость среды, малы скорости движения и масштабы движения, т. е. малы числа Рейнольдса Re=y//v. В этих случаях члены, характеризующие вязкость в уравнениях движения, гораздо больше инерционных членов, и последние могут быть отброшены. Тогда уравнение Навье — Стокса переходит в линейное уравнение, которое без учета объемной, или второй вязкости т], примет вид  [c.23]

Наконец, можно заметить, что поведение решения с конечным затуханием имеет сильное сходство со структурой турбулентности, исследованной Бэтчелором и Таунсендом 1). Движение жидкости имеет характер быстрых колебаний в конечной части поля и очень медленно меняется в другой его части. Это снова демонстрирует часто подчеркиваемое фундаментальное свойство движения вязкой жидкости при больших числах Рейнольдса. В некоторых случаях среда ведет себя как идеальная жидкость в других случаях действием вязкости пренебрегать нельзя, даже если она очень мала. Все более тонкая пространственная структура течения жидкости как раз достаточна для того, чтобы уравновесить исчезание вязкости и сохранить влияние вязких членов в уравнениях Навье—Стокса.  [c.172]

Оно отличается от первого из уравнений (3.31) наличием члена аАу в правой части. Уравнение (4.5) называется уравнением Навье-Стокса и является основным при расчете движения вязкой несжимаемой жидкости. Общее аналитическое решение этого уравнения не получено, и поэтому для его решения используются численные методы. На практике иногда приходится ограничиваться частными задачами. Одной из таких задач является течение невязкой несжимаемой жидкости. Ранее мы получили условие, при котором сжимаемостью жидкости или газа можно пренебречь. Теперь выясним, в каких случаях можно пренебречь силами вязкости.  [c.65]

Вывод о том, что относительное движение частиц в звуковом поле представляет собой движение одной из них в потоке, возникающем около другой, может быть сделан на основе следующих рассуждений. Если в звуковом поле находятся две частицы на расстоянии й друг от друга, то можно показать, что уравнение движения вязкой жидкости относительно этих частиц распадается па два уравнения, каждое из которых определяет движение среды около одной из частиц. Уравнение Навье— Стокса для двух частиц, когда начало координат выбрано в первой частице, запишется в виде  [c.669]

Рассмотрим два подобных потока, условия движения которых определяются дифференциальными уравнениями движения вязкой жидкости Навье—Стокса.  [c.129]

Аналогично можно расписать и две другие проекции. Полученная система уравнений движения вязкой жидкости и носит название системы уравнений Навье-Стокса.  [c.75]

Для типичных жидкостей уравнения Навье-Стокса применимы до тех пор, пока периоды движения велики по сравнению с молекулярными временами. Это, однако, не относится к очень вязким жидкостям. Для таких жидкостей обычные гидродинамические уравнения  [c.789]

К спорным вопросам методики изложения, принятой в настоящем курсе, мы относим, например, предлагаемый авторами способ вывода общего уравнения энергии на основе первого начала термодинамики ( 4-2). Нам представляется, что традиционный способ использования первого начала термодинамики при выводе уравнения энергии, принятый в лучших отечественных курсах газовой динамики, является более корректным и дает возможность яснее представить сущность делаемых при этом термодинамических допущений. Недостаточно ясна с математической точки зрения трактовка понятий материального метода и метода контрольного объема в 3-6. Оба метода опираются на эйлерово представление о движении жидкой среды. Их противопоставление, как нам кажется, носит иногда искусственный характер. При выводе общих уравнений движения вязкой жидкости — уравнений Навье — Стокса — авторы, видимо, следуя Г. Шлихтингу , опираются на аналогию с напряженным состоянием упругого тела. При этом предполагается знание читателем некоторых вопросов теории упругости. Вряд ли такой способ вывода фундаментальных гидродинамических уравнений будет удобен для любого читателя. Еще одним спорным в методическом отношении местом является то, что изложение теории турбулентного пограничного слоя опережает изложение представлений о турбулентном течении в трубах. Между тем, как известно, теория пограничного слоя использует некоторые зависимости, устанавливаемые при изучении течений в трубах. Поэтому, может быть, естественнее начинать изложение вопроса  [c.7]

Вывести нестационарное уравнение движения вязкой жидкости (уравнение Навье — Стокса), используя интегральный вариационный принцип Дьярмати (2.29). Влиянием внешних полей пренебречь.  [c.113]


Как уже отмечалось, сложность турбулентного движения делает невозможным строгое рассмотрение течений при заданных граничных условиях. Одной из возможных альтернатив является переход от истинной картины, детали которой нам неизвестны, к рассмотрению осредненного турбулентного течения, т.е., по существу, замена принципиально неустановившегося движения на квазиустановив-шееся. Этот переход был предложен О.Рейнольдсом. Суть его сводится к тому, что в уравнениях движения вязкой жидкости (уравнениях Навье-Стокса) и уравнении неразрывности истинные значения параметров по определенным правилам заменяются их осредненными значениями. Получаемая таким образом новая система уравнений носит название уравнений Рейнольдса. Вывод этих уравнений выходит за рамки настоящего курса. Интересующиеся могут найти его в ряде учебных пособий, в частности, Федяевский К.К., Войткунский Я.И., Фаддеев Ю.И. Гидромеханика. - Л. Судостроение, 1968. - 567 с.  [c.92]

Наибольшие трудности представляет продгежуточная область. До сих пор нельзя еще говорить об установившихся методах расчета движений в пограничных слоях в этой области значений Reo и Moo, хотя вопросами этогО рода для общих движений вязкого газа еще во второй половине XIX века занимался Максвелл, а в начале нашего века Кнудсен, Милликен и др. Если говорить о той части рассматриваемой промежуточной области, которая граничит с крайней правой областью применимости уравнений Навье — Стокса, то здесь, по-видимому, можно удовольствоваться введением некоторых поправок в обычные методы механики жидкости и газов. Поправки эти идут в двух направлениях. Во-первых, становится существенным введение дополнительных членов в уравнения Навье — Стокса, выражающих необходимость использования в этих случаях некоторых нелинейных законов, приходящих на смену линейным законам Ньютона, Фурье и Фика.  [c.655]

При мотсматическом моделировании движения жидкого металла В ближний аоне воздействия использовались нелинейные уравнения вязкой теплопроводной жидкости — уравнения Навье-Стокса. Для их численного решения использовался метод Маккормака, хорошо зарекомендовавший себя при решении данного типа задач. Расчеты показали, что под действием внешнего импульсного воздействия в расплаве возникают два типа движения среды регулярные акустические течения, охватывающие достаточно большие области пространства, и турбулентные течения непосредстноньо на фронте кристаллизации, имеющие характер многочисленных мелкомасштабных вихрей.  [c.82]

Система (1.32) носит название уравнений Навье—Стокса. Известные точные решения этой системы очень хорошо подтверждаются опытными данными, что свидетельствует об адэкватном описании данной системой движений вязкой жидкости. Как видно из системы (1.32), в общем виде уравнения Навье—Стокса имеют весьма сложный вид. Их точное интегрирование удается в очень редких случаях [36].  [c.17]

В дифференциальное уравнение (3-8) в качестве неизвестной величины, кроме температуры, входит еще скорость. Распределение скорости в потоке жидкости определяется из совокупности уравнений движения вязкой жидкости и уравнения сплощности. Здесь используется уравнение движения в форме Навье—Стокса. При его выводе рассматриваются силы трения, подъемная сила (сила тяжести), сила давления п уравновешивающая их  [c.136]

Навье, Пуассон, Стокс, обобщив формулу Ньютона о связи касательных напряжений с полем скоростей, вывели фундаментальные уравнения движения вязкой жидкости. В результате интегрирования этих уравнений Стокс, И. С. Громеко, Н. П. Петров получиоти теоретические ре-  [c.10]

Теория движения вязкой жидкости в форме, весьма близкой к современной, была опубликована в 1845 г. Стоксом (1819—1903), который, выделив из общего перемещения элемента жидкости деформационную часть, указал простую линейную зависимость возникающих в жидкости напряжений от скоростей деформаций, г. е. дал обобш,е-ние ранее уже упомянутого закона Ньютона. До Стокса, основываяс1. на некоторых специальных молекулярных гипотезах относительно свойств реальных газов, уравнения движения вязкого газа выводили в 1826 г. Навье (1785—1836), в 1831 г. Пуассит (1781 —1846) и в 1843 г. Сеп-Венан (1797—1886).  [c.27]

Сущность метода Максвелла состоит в том, что он совершенно не связан с решением уравнения Больцмана и позволяет осуществить переход к уравнениям гидродинамики при любой функции распределёния. При этом, чтобы получить уравнения движения вязкой жидкости в форме уравнений Навье — Стокса, Максвеллу пришлось ввести две гипотезы  [c.54]

Основываясь на тезисе о сушествовании корректного математического описания для процесса движения материальной среды в любой области классической механики, предложен другой путь вывода уравнений движения вязкой жидкости, который повторяет процесс вывода, характерный для системы Навье, из теории упругости. В основе этого вывода лежит уравнение движения жидкости в напряжениях. Этот путь позволяет избежать ряда несоответствий, отмеченных в главе 1, и отказаться от использования при выводе системы уравнений Навье-Стокса понятия скорости угловой деформации частицы.  [c.7]

Д.Стокс [228], заложив основы феноменологического подхода к гидродинамике и теории упругости, предложил общее определение понятия жидкости разность между давлением, действун )щим на проходящую в заданном направлениц плоскость через произвольную точку Р движущейся жидкости и одинаковым для всех направлений давлением в этой же точке, когда жидкость в ее окрестности находится в состоянии относительного равновесия, зависит от относительного движения жидкости в непосредственной близости от Р, причем относительное движение, обусловленное любым вращением, может быть исключено без изменения упомянутой разницы давления [228]. Этому определению Д.Стокс придал и четкую математическую форму, придя в итоге к уравнениям движения вязкой жидкости. В настоящее время эти уравнения называются уравнениями Навье — Стокса. История развития представлений о характере и свойствах жидкости в XIX и начале XX в. представлена в работе [ 206 ]. Экспериментально установлено, что коэффициент пропорциональности между касательными напряжениями в точке и локальным градиентом скорости зависит от температуры жидкости и давления в точке и называется коэффициентом вязкости ц. Физический смысл этого параметра, связанный с молекулярным переносом количества движения в жидкости, раскрыт в [8, 65, 66]. Наряду с коэффициентом вязкости ц часто используется кинематический коэффициент вязкости  [c.9]

В 1826 г. французский ученый Навье получил впервые дифференциальные уравнения движения вязкой жидкости, основываясь на ряде физических гипотез. В 1846г. английский гидродинамик Стокс дал строгий вывод этих уравнений, в силу чего они известны как уравнения Навье- Стокса. При феноменологическом выводе уравнений Навье- Стокса, используются два главных допущения  [c.9]



Смотреть страницы где упоминается термин Уравнения движения вязкой жидкости (уравнения Навье—-Стокса) : [c.752]    [c.148]    [c.21]    [c.418]    [c.259]    [c.111]   
Смотреть главы в:

Техническая гидромеханика  -> Уравнения движения вязкой жидкости (уравнения Навье—-Стокса)



ПОИСК



283 — Уравнения жидкости

Вязкая жидкость в движении

Движение Стокса

Движение вязкой жидкости

Дифференциальные уравнения движения вязкой жидкости (уравнения Навье — Стокса)

Жидкости вязкие — Уравнения движения

Жидкость вязкая

На вье — Стокса уравнения движения

На вье — Стокса уравнения движения вязкой жидкости

Навой 97, XIV

Навье

Навье уравнение

Навье — Стокса для движения

Навье — Стокса для движения вязкой жидкости

Навье—Стокса

Навье—Стокса (движения вязкой

Составление уравнений движения сжимаемой вязкой жидкости (уравнения Навье — Стокса)

Стокс

Стокса Навье — Стокса

Стокса уравнение

Уравнение Навье—Стокса

Уравнение движения (Навье — Стокса)

Уравнения Навье—Стокса движения вязкой сжимаемой и несжимаемой жидкостей

Уравнения движения вязкой жидкости

Уравнения движения вязкой жидкости (уравнения Навье—Стокса) Уравнение Бернулли для струйки вязкой несжимаемой жидкости

Уравнения движения жидкости

Уравнения тел вязких



© 2025 Mash-xxl.info Реклама на сайте