Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Навье—Стокса (движения вязкой

Уравнения Навье—Стокса. Движение вязкой несжимаемой жидкости в общем случае отображается уравнением Навье— Стокса  [c.87]

Уравнения Навье — Стокса движения вязкой сжимаемой и несжимаемой жидкостей  [c.368]

Жуковского (фильтрации) 268 количества движения (импульсов) 101, 253 Лапласа 107 линии тока 60 Навье—Стокса (движения вязкой жидкости) 99 неразрывности 79, 105, 288 поверхности уровня 17 потенциала скорости 108 равновесия жидкости см. Уравнение Эйлера  [c.356]


Уравнения (3.3.3) являются уравнениями Навье-Стокса движения вязкой жидкости, которое в случае v = О переходит в уравнения Эйлера движения идеальной жидкости. Уравнение (3.3.4) есть уравнение несжимаемости жидкости.  [c.184]

В этом параграфе мы рассмотрим стационарную задачу Навье—Стокса движения вязкой несжимаемой жидкости, продолжая изучение обобщенной формулировки, связанной со смешанным методом, — по аналогии с предыдущим параграфом. Но в отличие от предьщущего, дискретная задача получается нелинейной. Поэтому одним, из этапов ее решения является метод Ньютона. Кроме того, матрицы систем в методе Ньютона получаются несимметричные и поэтому приходится использовать другие модификации многосеточных алгоритмов.  [c.274]

Отбрасывание в уравнении Орра — Зоммерфельда членов, зависящих от вязкости, представляет собой операцию, чреватую очень серьезными последствиями. В самом деле, понижая порядок дифференциального уравнения с четвертого до второго, мы, возможно, теряем важные свойства общего дифференциального уравнения возмущающего движения. К этому случаю применимы все соображения, высказанные в главе IV по поводу перехода от дифференциальных уравнений Навье — Стокса для вязкой жидкости к уравнениям Эйлера для жидкости без трения.  [c.428]

Дифференциальное уравнение движения вязкой несжимаемой жидкости представлено уравнением Навье — Стокса для оси л  [c.407]

Система дифференциальных уравнений, в которую входят дифференциальные уравнения теплообмена между твердым телом и внешней средой, энергии или теплопроводности в движущейся жидкости, движения вязкой несжимаемой жидкости (или уравнение Навье — Стокса) и сплошности, позволяет выявить структуру этих критериев.  [c.418]

Система (1.215) описывает движение вязкой жидкости и называется системой Навье — Стокса.  [c.44]

Для типичных жидкостей уравнения Навье—Стокса применимы до тех пор, пока периоды движения велики по сравнению с молекулярными временами. Это, однако, не относится к очень вязким жидкостям. Для таких жидкостей обычные гидродинамические уравнения становятся неприменимыми уже при гораздо больших периодах движения. Существуют вязкие жидкости, которые в течение достаточно малых (но в то же время больших ito сравнению с молекулярными) промежутков времени ведут себя, как твердые тела (например, глицерин, канифоль). Аморфные твердые тела (например, стекло) можно рассматривать как предельный случай таких жидкостей с весьма большой вязкостью.  [c.188]


Пользуясь формулами (6), (17), (19) и (23), можно в дифференциальных уравнениях (14), с учетом т] = О, т. е. о = —р, заменить напряжения скоростями деформаций. При этом мы получим так называемые дифференциальные уравнения движения вязкой жидкости Навье — Стокса.  [c.68]

В классической гидродинамике уравнение движения вязкой несжимаемой жидкости записывается в форме дифференциального уравнения Навье — Стокса, которое получается на основе второго закона Ньютона.  [c.262]

Это есть уравнение Навье-Стокса для движения вязкой жидкости.  [c.354]

Движение вязкой и теплопроводящей жидкости описывается уравнениями Навье-Стокса, уравнением неразрывности, уравнением переноса теплоты и термодинамическими уравнениями (уравнением состояния и выражениями энтальпии или энтропии через термические пара.метры р, V, Т).  [c.362]

Движение вязкой жидкости определяется уравнением Навье-Стокса, которое, как было показано в 10.3, имеет вид [см. уравнение (10.38)]  [c.362]

К сожалению, из-за сложности уравнения Навье-Стокса для движения вязкой жидкости даже в случае постоянных р, V и х расчет теплообмена сопряжен со значительными математическими трудностями. Поэтому часто прибегают к приближению пограничного слоя, заключающемуся, как это уже отмечалось ранее, в том, что в качестве исходных уравнений берут уравнения движения жидкости и переноса теплоты в пограничном слое, которые в стационарном случае имеют вид  [c.439]

Это есть уравнение Навье-Стокса для движения вязкой жидкости. В дальнейшем рассматри-вается движение жидкости при Р= 0.  [c.643]

УРАВНЕНИЯ ДВИЖЕНИЯ ВЯЗКОЙ ЖИДКОСТИ (УРАВНЕНИЯ НАВЬЕ—СТОКСА )  [c.82]

Эти уравнения называются уравнениями Навье — Стокса их используют для описания движений вязких сжимаемых жидкостей и газов.  [c.82]

Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости, поэтому для получения уравнения ее движения можно применить уравнения Навье — Стокса, положив л = О . Тогда уравнения движения вязкого газа (5.8) и движения вязкой несжимаемой жидкости (5.9) упрощаются и принимают вид  [c.99]

Для решения разнообразных задач о движении вязких жидкостей иногда удобно использовать специальные формы уравнений Навье—Стокса, например уравнение Гельмгольца, которое не содержит давления, а включает в себя только кинематические величины вихрь Q и скорость и. Чтобы получить это уравнение, учтем следующее векторное тождество, справедливое для любого вектора а  [c.290]

Луи Мари Навье (1785—1836 гг.)—видный французский инженер и механик, профессор Политехнической школы в Париже, член Парижской академии наук. Первым вывел (в 1824 г.) уравнения движения вязкой жидкости. Стокс — см. сноску в 7 гл. 2.  [c.88]

Навье — Стокса для движения вязкой жидкости 102 (1) неразрывности 75, 76, 80 (1) 81 (2)  [c.362]

Рассмотрим обтекание плоской бесконечно тонкой пластинки несжимаемой вязкой жидкостью. Пусть вдали перед пластинкой жидкость движется поступательно с постоянной скоростью Ид. Пластинка имеет бесконечную длину и расположена вдоль по потоку параллельно скорости Задача плоская движение установившееся жидкость занимает всю плоскость вне пластинки. Эта задача о движении вязкой жидкости является самой простой, но, несмотря на это, она не поддаётся точному решению с помощью уравнений Навье —Стокса ввиду больших математических трудностей. Мы разберём эту задачу с помощью уравнений Прандтля, которые получаются из общих уравнений движений вязкой жидкости с помощью некоторых приближений ).  [c.122]

Дифференциальные уравнения движения вязкой жидкости (уравнения Навье—Стокса)  [c.92]

В идентичности уравнений (154.31) и (154.32) можно убедиться непосредственными вычислениялти. Помимо векторного уравнения Навье — Стокса, движение вязкой жидкости будет описываться уравнением неразрывности  [c.244]


Примирение теории непрерывных переходов с теорией, в которой получаются и изучаются разрывные решения, обосновывается допущением о возможности получения разрывных решений в рамках данной простой модели как предела непре-рьшных решений той же задачи для последовательности усложненных моделей при непрерывном переходе коэффициентов в уравнениях движения усложненной модели к коэффициентам уравнений упрощенной модели. Например, при устремлении коэффициентов вязкости к нулю уравнения Навье — Стокса для вязкого газа переходят в уравнения Эйлера для идеального газа.  [c.354]

Выражения, аналогичные (1-36) — (1-41), можно получить и для проекций на оси у и г. Эта система уравнений при нулевой концентрации твердых частиц превратится в и звесгные уравнения движения Навье — Стокса для несжимаемой вязкой жидкости.  [c.40]

При мотсматическом моделировании движения жидкого металла В ближний аоне воздействия использовались нелинейные уравнения вязкой теплопроводной жидкости — уравнения Навье-Стокса. Для их численного решения использовался метод Маккормака, хорошо зарекомендовавший себя при решении данного типа задач. Расчеты показали, что под действием внешнего импульсного воздействия в расплаве возникают два типа движения среды регулярные акустические течения, охватывающие достаточно большие области пространства, и турбулентные течения непосредстноньо на фронте кристаллизации, имеющие характер многочисленных мелкомасштабных вихрей.  [c.82]

Уравнение Эйлера (26а) определяет движение идеальной жидкости. Для получения уравнений гидродинамики реальной (вязкой) жидкости или газа надо искать решение уравнения Больцмана, отличное от локального распределения Максвелла. Мы получим тогда уравнения Навье—Стокса, Барнетта и т. д., в которых коэффициенты вязкости, теплопроводности и диффузии выражаются через молекулярные характеристики. Эти уравнения представляют собой замкнутую систему уравнений термодинамики необратимых процессов. Такой вывод этих уравнений в общем случае выходит за рамки нашего курса. Мы ограничимся здесь только характеристикой методов решения кинетического уравнения Больцмана и рассмотрим ряд частных задач статистической теории неравновесных систем.  [c.142]

По современным представлениям уравнения Эйлера (1.2) описывают движение только идеальной (невязкой) среды. Уравнения Навье-Стокса (1.3) решены для частных случаев ламинарного движения вязкой среды. Уравнения О. Рейнольдса (1.4), полученные с целью описания турбулентного движения вязкой среды, отличаются от уравнений Навье-Стокса дополнительными членами, обусловленными турбулентным пульсацион-ньш движением. Дополнительные члены в уравнениях Рейнольдса рассматривают /125/как компоненты тензора напряжения, возникающего в  [c.15]

Уравнения Навье-Стокса (1.3) в общем виде не решены. Однако не решая эти уравнения, можно определить некоторые закономерности движения вязкой среды исходя из этих уравнений. Для этого воспользуемся безразмерной формой уравнений (1.3). Пусть Ь - xapaктqэнaя длина, а Т - характерный промежуток времени для неустановившегося движения (масштаб длины и времени). Выражая текущие координаты X, у, г и время t через эти масштабы, получим  [c.19]

Из предыдущих рассуждений следует, что турбулентная часть потока описывается нелинейными членами уравнений Навье-Стокса. Это было отмечено и П. Брэдшоу /23/. Таким образом, уравнения Навье-Стокса описывают не только ламинарное движение вязкой сре.ды, а также турбулентное движение. Однако из-за математических трудностей использование уравнений Навье-Стокса для описания турбулентного движения в настоящее время невозможно.  [c.21]

Следовательно, сформулированные выше условия в данном случае оказываются не только необходимыми, но и достаточными для существования механического подобия. Однако такое заключение нельзя распространить на произвольное движение вязкой жидкости, поскольку теорема существования и единственности решения уравнений Навье — Стокса доказана хотя и для многих, но все же частных классов движения. В общем случае необходимые и достаточные условия подобия не определены. Правда, это не исключает возможности практического использования теории подобия. В практике при постановке эксперимента существование и единственность группы потоков, подобных натурному, предполагают apriori, модель выполняют, исходя из необходимых условий подобия, и ее принадлежность к указанному классу проверяют на основе сопоставления частично известных натурных данных с результатами измерений на модели.  [c.123]

Рассмотрим общую схему ирим енення численного метода сеток к расчету плоского неустановившегося течения вязкой несжимаемой жидкости. Прежде всего придадим уравнениям Навье—Стокса удобную для численных расчетов форму. Поскольку для плоского течения = О, то уравнения движения имеют вид  [c.354]

Система (1.32) носит название уравнений Навье—Стокса. Известные точные решения этой системы очень хорошо подтверждаются опытными данными, что свидетельствует об адэкватном описании данной системой движений вязкой жидкости. Как видно из системы (1.32), в общем виде уравнения Навье—Стокса имеют весьма сложный вид. Их точное интегрирование удается в очень редких случаях [36].  [c.17]


Уравнения движения вязкого газа (уравнения Навье—Стокса) при р = onst имеют вид  [c.74]

Основы теории движения вязкой жидкости были заложены французским ученым Навьё (1785—1836) и английским физиком и математиком Стоксом (1819—1903). Поэтому уравнения движения вязкой жидкости называются уравнениями Навье—Стокса.  [c.8]

Из анализа уравнений Навье—Стокса [68] можно [юказать, что движение жидкости, вызванное сжатием или расширением сферического пузырька, описывается уравнением невязкой жидкости, а влияние вязкости учитывается граничными условиями. Из курса динамики вязкой жидкости известно, что при движении вязкой жидкости возникают касательные напряжения и изменяются нормальные напряжения (по сравнению с невязкой жидкостью). На основании гипотезы Ньютона при ламинарном  [c.31]

Все теоретические исследования о движении вязкой жидкости исходят из предпосылки о справедливости уравнений Навье —Стокса для истинного неустановившегося пульсирующего движения. Однако ввиду крайней запутанности, извилистости и сложности траекторий частиц жидкости при турбулентном движении и, повидимому, вообще всех основных функпиональных связей получение решения уравнений Навье — Стокса для таких движений представляет собой крайне громоздкую и сложную задачу, которую можно сравнить с задачей об описании движения отдельных молекул большого объёма газа. Поэтому, подобно тому как в кинетической теории газов, так и в гидромеханике основные задачи о турбулентных движениях жидкости ставятся как задачи о разыскании <функциональных соотношений между средними величинами.  [c.128]


Смотреть страницы где упоминается термин Навье—Стокса (движения вязкой : [c.71]    [c.418]    [c.722]    [c.289]    [c.88]    [c.133]   
Гидравлика Основы механики жидкости (1980) -- [ c.0 ]



ПОИСК



Движение Стокса

Дифференциальные уравнения движения вязкой жидкости (уравнения Навье — Стокса)

Навой 97, XIV

Навье

Навье — Стокса для движения

Навье — Стокса для движения вязкой жидкости

Навье—Стокса

Навье—Стокса (движения вязкой неразрывности

Навье—Стокса (движения вязкой поверхности уровня

Навье—Стокса (движения вязкой потенциала скорости

Навье—Стокса (движения вязкой равновесия жидкости

Навье—Стокса (движения вязкой расхода потока

Навье—Стокса (движения вязкой функции тока

Навье—Стокса (движения вязкой характеристическое

Составление уравнений движения сжимаемой вязкой жидкости (уравнения Навье — Стокса)

Стокс

Стокса Навье — Стокса

Уравнения Навье—Стокса движения вязкой сжимаемой и несжимаемой жидкостей

Уравнения движения вязкой жидкости (уравнения Навье—-Стокса)

Уравнения движения вязкой жидкости (уравнения Навье—Стокса) Уравнение Бернулли для струйки вязкой несжимаемой жидкости



© 2025 Mash-xxl.info Реклама на сайте