Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Другие методы приближенного решения уравнений теории упругости

Метод конечных элементов (МКЭ) применяется для моделирования напряженного состояния склонов сложного геологического строения. Ои позволяет получать приближенные решения уравнений теории упругости, что достигается заменой сплошной среды дискретным аналогом, состоящим из конечного числа отдельных элементов, вплотную прилегающих друг к другу и шарнирно скрепленных в вершинах этих элементов. Форма и размеры объекта подчиняются в модели строгому геометрическому подобию или ограничиваются на некотором расстояний от места приложения нагрузок, где значениями напряжений или перемещений, возникающих от этих нагрузок, можно пренебречь. Форма элементов может быть различной, она зависит от формы рассматриваемой области или ее участков. Для плоской задачи наиболее простые решения получаются при треугольной или прямоугольной форме элементов.  [c.152]


В силу больших математических трудностей получение точных аналитических решений многих задач теории упругости в форме, доступной для практических целей, затруднительно или невозможно. В этом случае можно использовать вариационные методы, которые позволяют получать приближенные решения задач теории упругости в аналитической форме. При этом приближенно удовлетворяются дифференциальные уравнения или граничные условия, а в отдельных случаях—и те и другие. В основе вариационных методов лежат вариационные принципы, например, принцип возможных перемещений Лагранжа.  [c.449]

Рассмотрим задачу о трещине, начальная длина которой равна нулю. В этом случае метод, основанный на последовательном учете взаимного влияния напряжений о (л у, изложенный в 5.4, не может быть применен. Если задача автомодельна и = t o(t/Xl / 2), то ее можно решить другим способом, например на основе метода функционально-инвариантных решений [32, 31, 117, 122]. При этом используются решения уравнений теории упругости, определенные и вне плоскости трещины. Однако для приближенной модели (1.30) состояние вне указанной плоскости не определено, постулирована лишь связь (4.1) между перемещением и напряжением в плоскости трещины. С целью получить решение как для точной, так и для приближенной моделей, воспользуемся другим методом, основанным на введении аналитических представлений, определяемых формулами  [c.221]

Наиболее эффективным из приближенных методов в теории пластичности следует считать метод последовательных приближений А. А. Ильюшина, именуемый методом упругих решений [3] в нем для первого приближения принимается решение аналогичной задачи теории упругости (со сходственными граничными и другими условиями), благодаря чему в первом приближении выясняются границы между упругими и пластическими зонами как по длине стержня (пластинки и др.), так и по высоте сечения. Это позволяет в первом приближении вычислить для каждой точки такого сечения значение числа ш, входящего в основной физический закон пластичности (4.13). Зная величину ш, можно в порядке первого уточнения исправить ранее вычисленные компоненты напряжения, внести поправки в первоначальные основные уравнения теории упругости, что определит новые границы между упругой и пластическими зонами,  [c.193]


Заканчивая рассмотрение вопроса аналогий, кратко обсудим другой приближенный метод решения задач теории упругости. Э от метод основан на замене дифференциальных уравнений этих задач уравнениями в конечных разностях и решении этих уравнений численно методом последовательных приближений. Впервые этот метод был использован К. Рунге ), который таким образом решил сложную задачу кручения. В дальнейшем больших успехов достиг Л. Ричардсон, применивший этот метод к решению двумерных задач теории упругости и рассмотревший в качестве примера напряжения в дамбах от действия сил тяжести и давления воды ). В по-  [c.670]

В механике сплошной среды ранее других стали развиваться вариационные методы в теории упругости, в частности в задачах равновесия упругого тела, после того, как В, Ритц опубликовал в 1908 г. свой метод приближенного решения вариационной задачи. Пожалуй, только с середины прошлого века стали разрабатываться вариационные методы в гидромеханике. Весьма интересна вариационная формулировка уравнения баланса и использование ее в задачах термодинамики и задачах переноса, в том числе в задачах  [c.439]

Метод граничных элементов (МГЭ) — это метод решения краевых задач для дифференциальных уравнений в частных производных, появившийся в результате сочетания идей теории потенциала с методами современной теории аппроксимации. МГЭ, с точки зрения теории аппроксимации, имеет много общих черт с широко известным методом конечных элементов, но отличается от него существенным преимуществом дискретизация осуществляется, как правило, не внутри области, в которой ищется решение, а на ее границе. Такое упрощение достигается путем точного удовлетворения исходным дифференциальным уравнениям с помощью представлений решения в виде, характерном для теории потенциала. Указанные представления могут быть использованы в рамках МГЭ лишь в случае, когда известны в явном виде (точно или приближенно) фундаментальные решения (или функции Грина) для рассматриваемых дифференциальных уравнений 1 исследованы граничные свойства соответствующих потенциалов. Путем предельного перехода на границу в формулах представления решения получаются граничные интегральные уравнения (ГИУ), которые являются основным объектом аппроксимации Б МГЭ. Этим объясняется еще одно (более раннее) название МГЭ — метод граничных интегральных уравнений. Заметим, что возникающие в теории упругости и в других разделах механики деформируемого твердого тела ГИУ часто являются сингулярными интегральными уравнениями [114, 107, 84], методы аппроксимации которых далеко не тривиальны.  [c.3]

В механике композиционных материалов (КМ) получили развитие два взаимосвязанных и дополняющих друг друга направления исследований. Первое из них базируется на строгом учете структуры материала, второе — на использовании интегральных диаграмм деформирования, которые могут быть получены экспериментально или расчетным путем. Точные решения задач механики в постановке, соответствующей первому направлению, кроме рассмотренных специфических вопросов [1-4], подтвердили применимость методов второго направления к весьма широкому классу композитов, использующихся для изготовления оболочечных конструкций, в связи с этим при разработке методов решения задач статики и динамики оболочек из КМ структурные особенности последних учитываются только при расчете эффективных характеристик анизотропной сплошной среды, имеющей такие же диаграммы деформирования и прочностные характеристики, что и исходный КМ. Построив в таком приближении уравнения состояния КМ, а также используя уравнения движения и соотношения между перемещениями и деформациями теории упругости анизотропного тела, можно получить решение соответствующих задач, хотя это сопряжено со значительными трудностями.  [c.105]


В дискретных приближенных методах неизвестные функции с самого начала заменяются их значениями в отдельных точках. При этом различными способами получают прямые приближенные решения основных уравнений, и в процессе вычислений постоянно оперируют численными значениями основных переменных. Иногда в качестве недостатка этих методов указывают на то, что нет аналитического выражения ( формул ) зависимости переменных друг от друга, а получаются только численные значения искомых функций в определенных точках (поэтому эти методы называются также сеточными). При применении теории упругости к практическим задачам это обстоятельство часто не является помехой, так как обычно и без того граничные значения, напрнмер, нагрузки, действующей на элементы конструкций, известны по измерениям в конечном числе точек.  [c.128]

Предлагаемая книга посвящена применению методов потенциала к основным граничным задачам теории упругости. Исследования на эту тему занимали автора и раньше [13 а, г, е], но настоящая работа отличается от прежних тем, что в ней впервые, наряду с однородными телами, рассматриваются также кусочно-неоднородные и доказываются теоремы существования для основных граничных задач таких тел. Второй особенностью книги является построение всей теории граничных задач на базе теории сингулярных интегральных уравнений. Это позволило, с одной стороны, расширить круг исследуемых граничных задач (контактные задачи, смешанные задачи) и, с другой стороны, обнаружить новые возможности метода При точном и приближенном решении многих задач Наконец, третья особенность книги заключается в том, что в ней впервые излагаются два новых способа приближенного решения граничных задач.  [c.7]

Задача о рассеянии звука. Метод, прн помощи которого в предыдущих параграфах строились приближенные решения различных граничных задач теории упругости, может быть применен и для приближенного решения многих других задач математической физики. Рассмотрим для примера задачу о рассеянии звука твердым препятствием. Эта задача приводится к интегрированию скалярного уравнения колебаний  [c.356]

Учитывая это, Сен-Венан предлагает полуобратный метод, следуя которому он задается лишь некоторыми компонентами смещений и некоторыми компонентами сил, определяя недостающие компоненты тех и других так, чтобы при этом удовлетворялись все уравнения теории упругости. По его словам, всякий инженер, руководствуясь приближенными решениями элементарной теории сопротивления материалов, получает возможность рекомендуемым им способом находить и строгие решения, представляющие практическую важность. Иллюстрируя этот метод, Сен-Венан дает решения для кручения и изгиба приэмати-Рис- 125, ческих брусьев раэличных по-  [c.284]

Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]

Для других случаев концентрации напряжений используются в основном приближенные способы, основанные на применении соответствующих кинематических гипотез или численных методов (метод уттругих решений, конечно-элементный метод, метод интегральных уравнений и др.). Однако указанные способы применяют в основном в исследовательских, а не инженерных целях, поскольку решение многих задач для различных режимов эксплуатации в случае статического, и особенно циклического нагружения конструкций требует значительного машинного времени и большого объема исходной информации. Получаемые при этом результаты примени.мы для конкретных конструкций, материала и уровня нагрузок. Практика инженерных расчетов базируется в основном на применении задач теорий упругости пластин, оболочек и стержней или на использовании результатов прямого экспериментального изучения местных напряжений и деформаций. Последнее, как известно, применяется для весьма ответственных машин и конструкций в силу сложности и трудоемкости экспериментов по анализу процессов эксплуатационного нагружения.  [c.69]

Изложенный в настоящем параграфе приближенный метод расчета ламинарного пограничного слоя основывался на использовании однопараметрического семейства профилей скорости, представлявших точные подобные решения уравнений Прандтля (11). Такой подход или несколько более общий, заключавшийся в выборе конкурирующих однопараметрических семейств профилей скорости среди других, известных к тому времени точных решений, возник только в самом конце тридцатых годов. Ранее использовались искусственно образованные аналитические семейства профилей, просто схожие по форме с действительными профилями, совпадающие с ними на внешней (г/ = б) и внутренней (у = 0) границе пограничного слоя. Произвол в выборе такого рода конкурирующих наборов профилей скорости породил большое число различных приближенных методов и, по-видимому, отражал широко в то время принятый в теории упругости метод Ритца.  [c.466]


В трехмерной теории упругости в качестве тела, имеющего угловую линию часто брали четверть пространства [18,32,33,51-53,59,63-69], получая приближенные решения при помощи интегрального преобразования Фурье. Например, в работе [33] изучена задача о четверти пространства, жестко заделанной по одной стороне и нагруженной по другой нормальными и касательными усилиями. Для нормального напряжения в заделке составлено интегральное уравнение первого рода и исследован характер особенности решения вблизи ребра. Большой интерес к задачам для упругой четверти пространства проявляют американские и японские механики. Численный метод компенсирующих нагрузок был применен Хетени для получения общего решения для четверти пространства [66] (в западной печати эта задача теперь носит имя Хетени). Задача Хетени пересматривалась и алгоритм ее решения упрощался [65, 67], затем методом типа конечных элементов была рассмотрена контактная задача о действии прямоугольного штампа на упругую четверть пространства [68 .  [c.181]


Смотреть страницы где упоминается термин Другие методы приближенного решения уравнений теории упругости : [c.404]    [c.415]    [c.517]    [c.745]    [c.182]    [c.238]   
Смотреть главы в:

Приложение методов теории упругости и пластичности к решению инженерных задач  -> Другие методы приближенного решения уравнений теории упругости



ПОИСК



Другие методы

Другие методы решения

К упругих решений

Метод решения уравнений

Метод теории решений

Метод упругих решений

Методы Уравнения упругости

Методы приближенные

Приближенная теория

Приближенные методы решения

Приближенные методы решения уравнений

Решения метод

Решения приближенные

Теории Уравнения

Теория Метод сил

Теория упругости

Упругость Теория — см Теория упругости

Уравнение метода сил

Уравнения Уравнения упругости

Уравнения теории упругости

Уравнения упругого КА

Уравнения упругости



© 2025 Mash-xxl.info Реклама на сайте