Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тело Сен-Венана

В реологии, в частности, изучаются такие представители классических идеальных тел, как твердое тело Гука, жидкость Ньютона и твердое тело Сен-Венана. Первое—идеальное линейно упругое тело—является объектом классической теории упругости, второе — простая , вязкая жидкость — объектом классической гидродинамики, третье—твердое тело, имеющее предел текучести, ниже которого тело является абсолютно твердым, а при достижении которого течет, —изучается в теории идеальной пластичности.  [c.512]


Вводные замечания. Число различных идеальных реологических тел практически неограничено. Многие из них могут быть построены на основе всего лишь трех простейших тел, называемых классическими, — тела Гука, тела Ньютона и тела Сен-Венана. В отличие от классических тел остальные называются сложными. В соответствии с таким делением тел классифицируются и реологические свойства, которые могут быть фундаментальными и сложными. К первым относятся упругость, вязкость и пластичность (внутреннее трение). Сложные свойства являются комбинациями элементарных. Некоторые из сложных свойств получили специальное название последействие, релаксация и т. п. Кроме трех отмеченных можно указать еще одно — четвертое фундаментальное свойство — прочность. Это свойство в настоящей главе не обсуждается и полностью отнесено в главу  [c.513]

Рис. 7.4. Классические тела реологии а) модель тела Гука б) модель тела (жидкости) Ньютона в) модель тела Сен-Венана г) диаграммы тела Прандтля д) диаграммы А1 и о —е тела Гука е) диаграммы Р — Д/ и а —е тела Ньютона ж) диаграммы Р — А1 к а—8 тела Сен-Венана / — сила трения покоя, 2 — сила трения движения и а — верхний и нижний пределы текучести. Рис. 7.4. Классические тела реологии а) <a href="/info/46234">модель тела Гука</a> б) <a href="/info/140409">модель тела</a> (жидкости) Ньютона в) <a href="/info/140409">модель тела</a> Сен-Венана г) диаграммы <a href="/info/46735">тела Прандтля</a> д) диаграммы А1 и о —е тела Гука е) диаграммы Р — Д/ и а —е <a href="/info/46730">тела Ньютона</a> ж) диаграммы Р — А1 к а—8 тела Сен-Венана / — <a href="/info/1987">сила трения</a> покоя, 2 — <a href="/info/29619">сила трения движения</a> и а — верхний и нижний пределы текучести.
Аналогом тела Гука является пружина, тела Ньютона —поршень, вставленный с зазором в цилиндр, наполненный вязкой жидкостью тела Сен-Венана — элемент сухого трения при этом верхнему пределу текучести соответствует трение покоя, а нижнему—трение движения. Отметим, что модели работают на простое растяжение, но они способны описать и общий случай напряженного состояния.  [c.515]

Если пластическая деформация является развитой, то упругой составляющей с достаточной точностью можно пренебречь. В этом случае поведение материала описывается диаграммой, изображенной на рис. 10.5. При растягивающих напряжениях, меньших, чем (или сжимающих, меньших а ), деформаций в теле вообще нет. При (Т = а или a = —a j начинается пластическое течение, деформация неопределенна и может неограниченно возрастать. Разгрузка протекает по пути ВС. Другими словами, вся накопленная в теле деформация является пластической. Такую модель называют идеальным жестко-пластическим телом (телом Сен-Венана).  [c.727]


Модель тела Сен-Венана 515  [c.825]

В реологии широко применяют модельные представления упругое поведение характеризуют пружиной (тело Гука или Я-тело) вязкое — амортизатором, например, в виде трубки с вязким маслом, в которой свободно ходит поршень (ньютоновская вязкая жидкость или Л -тело) пластичное тело, движущееся с трением по горизонтальному столу (тело Сен-Венана или 5/-У-тело). Деформацию различных комбинаций этих и других моделей затем описывают с помощью системы соответствующих уравнений.  [c.132]

Для решения вышеназванных проблем при анализе течений бингамовских сред авторами (А. В. Гноевой, Д. М. Климов, В. М. Чесноков, 1997) была предложена новая постановка таких задач и новые уравнения для их решения [16,20]. Сущность предложения заключается в следующем а) ядро течения такой среды принимается, в соответствии с моделью бингамовской среды, идеально пластичным телом (телом Сен-Венана) б) в текущей среде, в зависимости от ее напряженного состояния, различаются следующие области а) область сдвигового течения, в которой интенсивность напряжений больше предельного напряжения сдвига б) область идеально пластического течения, в которой интенсивность напряжений равна предельному напряжения сдвига в) граничными условиями являются на стенках  [c.12]

Приведенные идеальные тела (их математические модели — реологические уравнения) образуют классы веществ, обладающих подобными свойствами, и являются объектами исследования соответствующих научных дисциплин тело Гука — теория упругости ньютоновская жидкость — гидродинамика тело Сен-Венана — теория пластичности.  [c.37]

Принцип Сен-Венана. Если тело нагружается статически эквивалентными системами сил и размеры области их приложения невелики (по сравнению с размерами тела), то в сечениях, достаточно удаленных от мест приложения нагрузок, величина напряжений весьма мало зависит от способа нагружения. Напри-  [c.128]

Определяя напряжения при растяжении, сжатии и при других видах деформаций, в сопротивлении материалов, а также в теории упругости широко пользуются следуюш,им весьма важным положением, носящим название принципа Сен-Вена-на если тело нагружается статически эквивалентными системами сил, т. е. такими, у которых главный вектор и главный момент одинаковы, и при этом размеры области приложения нагрузок невелики по сравнению с размерами тела, то в сечениях, достаточно удаленных от мест приложения сил, напряжения мало зависят от способа нагружения.  [c.87]

Условия совместности Сен-Венана вытекают из постулирования евклидовых свойств пространства, связанного с деформированной средой. Сравнительно недавно такое постулирование внутренних свойств пространства с метрикой, изменяющейся при деформировании твердого тела, не вызывало сомнений. Лишь в пятидесятых годах, в связи с развитием континуальной теории дислокаций, было выяснено, что такое постулирование в ряде случаев должно быть заменено более общими представлениями о внутренних свойствах пространства. Здесь мы ограничимся классическим изложением. Возвратимся к равенствам (IV. 80) и вопросу о возможности преобразования метрики в деформированной среде к евклидовой метрике в эйлеровых переменных.  [c.509]

Условия совместности Сен-Венана обеспечивают сплошность полученного таким способом односвязного тела. Но если приближаться к разрезу с двух различных сторон, то компоненты перемещения по (1.60) будут получаться различными. Пусть й+ и М" —значения вектора и, полученные при приближении к некоторой точке разреза с той или другой стороны. Условие неразрывности деформаций для тела в целом будет выполнено только в том случае, если наряду с условиями совместности соблюдены дополнительные требования = и вдоль всех разрезов, мысленно проведенных в теле с целью сделать его односвязным.  [c.14]

Значение этого принципа состоит в том, что он позволяет изменять распределение внешних воздействий на границе тела таким образом, чтобы решение задачи становилось более простым (и даже в некоторых случаях выражалось в виде простых формул). Другими словами, при использовании принципа Сен-Венана отказываются от точного удовлетворения граничных условий и проверяют эти условия лишь в интегральном смысле—в смысле равенства главных векторов и главных моментов внешних воздействий и внутренних напряжений на границе.  [c.64]


Эти правила имеют исключение. Так, например, силы, приложенные к небольшой поверхности тела, как и в теоретической механике, мы будем считать сосредоточенными, т. е. приложенными в точке распределенные реактивные силы, приложенные к защемленному концу балки, мы по-прежнему будем заменять реактивной силой и реактивным моментом. Такие замены не вносят существенных изменений в условия деформации тела. Это положение называют принципом смягченных граничных условий или принципом Сен-Венана, по имени французского ученого Сен-Венана (1797—1886).  [c.178]

Принцип Сен-Венана можно сформулировать следующим образом в точках тела, достаточно удаленных от мест приложения внешних сил, модуль внутренних сил весьма мало зависит от конкретного способа приложения сил.  [c.178]

Криволинейные интегралы (2.24) вычисляются при обходе отверстия по произвольной кривой L, охватывающей отверстие (рис. 2.10, а). Для сплошных односвязных тел уравнения Сен-Венана являются необходимыми и достаточными условиями получения непрерывных и однозначных полей перемещений.  [c.37]

Указанное положение было введено в теорию упругости Сен-Вена-ном и называется принципом Сен-Венана. Коротко он может быть сформулирован так в точках сплошного тела, достаточно удаленных от мест приложения локальных нагрузок, напряжения мало зависят от распределения этих нагрузок и определяются лишь величиной их статических эквивалентов (сил и моментов).  [c.48]

Если условия Сен-Венана для произвольного тензора 6 j выполнены, то можно найти такое поле перемещений, для которого вгу является тензором деформаций. В случае односвязного тела перемещение определяется с точностью до перемещения абсолютного твердого тела, в случае многосвязного — необходимо выполнение некоторых дополнительных условий.  [c.56]

Если тело многосвязно, то интеграл в формуле (3.44) может, вообще говоря, получить конечные приращения, в силу чего не обеспечивается однозначность перемещений, тогда как они должны быть однозначными. Многосвязное тело с помощью надлежащих мысленных разрезов можно обратить в односвязное, тогда при соблюдении условий совместности деформаций Сен-Венана перемещения Uh, определяемые (3.44), будут однозначными функциями, если кривая интегрирования нигде не пересекает линий разрезов. При приближении точки М к какой-либо точке линии разреза с левого или правого берега uu будут принимать, вообще говоря, различные значения. Отсюда становится ясно, что в случае много-связной области для обеспечения совместности деформаций дополнительными условиями будут (и )л.бер= (Ый)пр.бер ВДОЛЬ ВСеХ ЛИНИЙ разрезов.  [c.59]

В третьей главе было сказано, что шесть компонентов тензора деформаций ehr не являются произвольными функциями координат точки тела, а должны удовлетворять шести условиям совместности деформаций Сен-Венана. Учитывая это обстоятельство, подставим формулы (5,27) в условия совместности деформаций Сен-Венана тогда после ряда преобразований найдем шесть соотношений, связывающих между собою компоненты тензора напряжений. Следовательно, в итоге будем иметь три дифференциальных уравнения (5.26) и шесть соотношений между компонентами тензора напряжений, к выводу которых и приступим. Будем считать, что тело однородное, т. е. Я и не зависят от координат. Тогда полученная система уравнений будет применима только для изотропных, однородных и линейно-упругих тел.  [c.81]

Важно отметить, что система уравнений (5.33), (5.34) пригодна только для случая линейно-упругого изотропного однородного тела при изотермическом или адиабатическом процессе деформирования его, тогда как шесть уравнений совместности Сен-Венана пригодны для любого тела.  [c.83]

Эффективное решение указанных в 34 граничных задач упругого равновесия в общем случае представляет большие трудности. Принцип Сен-Венана в этом отношении занимает особое место в теории упругости. Благодаря этому принципу в настоящее время мы располагаем решениями многочисленных задач теории упругости, ибо принцип Сен-Венана позволяет смягчить граничные условия заданная система сил, приложенная к небольшой части упругого тела, заменяется другой, удобной для упрощения задачи, статически эквивалентной системой сил, приложенной к той же части поверхности тела.  [c.89]

Физический смысл этих уравнений таков. Если разбить тело на параллелепипеды, то при деформации тела деформируются все параллелепипеды. Если сложить эти деформированные параллелепипеды, то при соблюдении уравнений Сен-Венана они и после деформации образуют сплошное и непрерывное тело .  [c.22]

Поскольку при применении вариационного уравнения (3.6.1) мы задаем смещения и, о, щ, согласные со связями, наложенными на тело, то шесть тождественных соотношений Сен-Венана (1.7.4) будут также выполнены. Но если мы зададим шесть компонентов напряженного состояния (а 5, Оу и т. д.), то должны быть выполнены шесть тождественных соотношений Бельтрами.  [c.72]

В случае же многосвязного тела дифференциальные зависимости Сен-Венана (1.93) являю.тся необходимыми и достаточными условиями интегрируемости уравнений (1.30) и лишь необходимыми,/ но недостаточными условиями однозначности перемещений ut.  [c.25]

Тела Сен-Венанаи Прандтля. До некоторого предельного значения напряжения (5т)гу — предела текучести—тело Сен-Венана является абсолютно- твердым по достижении равенства  [c.514]

На рис. 7.4 показаны диаграммы Р — А1 и ст — е длятел Гука, Ньютона, Сен-Венана и Прандтля. В диаграмме Сен-Венана изображен зуб текучести. Реологические тела символически обозначаются так тело Гука —Я, тело Ньютона —У /, тело Сен-Венана — Можно представить механические аналоги реологических тел. На рис. 7.4, а, б, в изображены эти аналоги.  [c.515]


На рис. 1, в представлена модель жёсткопластвч. тела Сен-Венана, изображаемая в виде узла сухого трения. Элементы этого узла (на рис.— вертикальные чёрточки) смещаются один относительно другого, передавая пост, силу 6, независимую от скорости. Если приложенное напряжение о < 6, смещения нет. Т. о., для тела Сен-Венана деформации б и скорости деформаций 8 равны нулю, пока напряжения а меньше предела текучести 0 (а < 9). При о = 0 начинается деформирование, е и е при этом становятся отличными от нуля. Т. о., элемент сухого трения (рис. 1, в) моделирует предел текучести.  [c.383]

Рио. 5. Модель Бингама параллельное соединение жидкостного злеиента (поршень в цилиндре) и тела Сен-Венана.  [c.383]

К фундаментальным свойствам относят следующие упругость, вязкость, пластичность. Этими свойствами обладают вещества, названные по именам ученых их предложивших соответственно тело Гука (гуково тело), ньютоновская жидкость (вязкая жидкость), тело Сен-Венана (сен-венаново тело). Эти три идеальные тела, которые обладают только одним из фундаментальных свойств, являются своего рода эталонами, с которы-  [c.34]

Тело Сен-Венана. Тело Сен-Венана (сен-венаново тело) обладает только пластичностью. На рис. 2.5 приведены механическая модель и реологическая кривая, соответствующая реологическому уравнению. Реологическое уравнение соответствует деформи-  [c.36]

Большое влияние на понимание авторами физической картины течения бингамовских сред оказала работа М. Рейнера (1960 г.) [70]. В ней дан подробный анализ уравнений Г. Генки, области их применения и своего рода ключ к пониманию поведения сред имеющих несколько фундаментальных свойств. М. Рейнером, в частности, отмечается, что в соответствии с третьей аксиомой реологии реологическое уравнение более простого тела (низшего по иерархии) может быть получено из реологического уравнения менее простого тела (высшего по иерархии), если положить какие-либо константы последнего равными нулю . Это значит, например, что из реологического уравнения тела Шведова-Бингама (1) при tq = О можно получить реологическое уравнение вязкой жидкости, а при /i = О — реологическое уравнение тела Сен-Венана (пластического тела). В этой же работе Рейнер развивает свою мысль далее В соответствии с третьей аксиомой реологии, если известно решение задачи для бингамова тела, можно получить решение аналогичной задачи для сен-венанова тела, полагая величину Щл равной нулю . Здесь под тупл Рейнером понимается коэффициент динамической вязкости среды или, как его называют в реологии, коэффициент пластической вязкости.  [c.46]

Можно доказать, что уравнения совместности деформаций являются необходимыми условиями для возможности определения перемещений по заданным компонентам деформации. Если рассматривается односвязанное тело, не имеющее сквозных полостей, то условия Сен-Венана оказываются достаточными для этой цели. Для многосвязанного тела условия Сен-Венана также позволяют определить перемещения (и, V, т), однако, в этом случае эти перемещения могут представиться как многозначные функции от X, у, г, и требуется введение дополнительных условий. Уравнение совместности деформаций всегда удовлетворяется, если найденные компоненты тензора деформаций имеют постоянное значение и являются функциями декартовых координат (так как вторая производная будет равна нулю).  [c.16]

Бусскнеск для доказательства принципа Сен-Венана рассмотрел полубесконечное тело, находящееся под действием сосредоточенных сил, перпендикулярных к его плоской границе. Небезынтересно заметить, что до сих пор строго общего доказательства прин-  [c.88]

При решении задач теории упругости часто обращаются к принципу Сен-Венана. Если при решении задачи граничные условия задаются точно согласно истинному распределению сил, то решение может оказаться весьма сложным. В силу принципа Сен-Венана можно, смягчив граничные условия, добиться такого решения, чтобы оно дало для большей части тела поле тензора напряжений, очень близкое к истинному. Определение тензора напряжений в месте приложения нагрузок составляет особые задачи теории упругости, называемые контактными задачами или задачами по исследованию местных напряжений. На рис. 12 показаны две статически эквивалентные системы сил одна в виде сосредоточенной силы Р, перпендикулярной к плоской границе полубесконечной пластинки, а другая — в виде равномерно распределенных на полуцилиндриче- Кой поверхности сил, равнодействующая которых равна силе Р и перпендикулярна к границе пластинки. В достаточно удаленных  [c.88]

Равенства (5.52) показывают, что боковая поверхность тела должна быть свободна от внешних сил, что вполне справедливо, так как на тело действуют только осевые силы. Равенства (5.53) показывают, что на основаниях бруса должны быть приложены равномерно распределенные растягивающие усилия интенсивностью р. Фактически передача растягивающей силы на рассматриваемый брус мо жет сильно отличаться от равномерно распределенных растягивающих сил. Однако, согласно принципу Сен-Венана, на достаточо удаленной от оснований бруса части его решение (5.51) можно принять за точное.  [c.91]

Последнее соотношение показывает, что функция ф(Х[, Хг), назы-айемая функцией кручения Сен-Венана, должна быть гармонической функцией переменных a i и j 2 в области S, занятой поперечным сечением тела. Из третьей формулы (7.1) вытекает, что перемещение Из также должно быть гармонической функцией.  [c.174]

Большое количество задач теории упругости решается с использованием принципа локальности эффекта самоуравновешенных внешних нагрузок—принципа Сен-Венана. Согласно этому принципу, если в какой-либо малой части тела приложена уравновешенная система сил, то она. вызывает в теле напряжения, очень быстро убывающие по мере удаления от этой части (экспоненциальный характер затухания напряжений).  [c.6]

Принцип Сен-Венана можно сформулировать также следующим образом если некоторую совокупность поверхностных сил на сравнительно малой части поверхности тела заменить статически эквивалентной аютемой сил, действуюищх на той оке части поверхности, то такая замена сил практически не изменит напряжений и перемещений в точках, удаленных от плош адки приложения сил на расстояния, не меньшие наибольшего линейного размера этой площадки.  [c.83]


Смотреть страницы где упоминается термин Тело Сен-Венана : [c.822]    [c.50]    [c.274]    [c.26]    [c.119]    [c.290]    [c.86]    [c.88]    [c.173]    [c.82]    [c.105]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.512 , c.515 ]



ПОИСК



Диаграмма тела Сен-Венана

Задача Сен-Венана для однородного призматического тела (цилиндра)

Модель тела Сен-Венана

Сен-.Вена

Сен-Венан

Тела с начальными напряжениями. Вторая теорема Кастилиано и принцип Сен-Венана



© 2025 Mash-xxl.info Реклама на сайте