Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зубофрезерные Столы

IX. 1) для фрезерования зубьев цилиндрических зубчатых колес червячной фрезой 7 устанавливают на зубофрезерном столе станка и закрепляют винтами 17. При переключении распределительного крана сжатый воздух через штуцер 13 поступает в верхнюю полость  [c.226]

На рмс. 6.83 показан зубофрезерный станок. На станине / установлена неподвижная стойка 2. Фрезу, закрепленную на оправке, устанавливают в шпинделе фрезерного суппорта 3, который перемещается по вертикальным направляющим стойки. Заготовку закрепляют на оправке вращающегося стола 7. Верхний конец оправки поддерживается подвижным кронштейном 5. Салазки й обеспечивают горизонтальное перемещение стойки 6 и стола 7 по направляющим станины. Поперечина 4 связывает обе стойки и тем самым повышает жесткость станка.  [c.352]


В зубофрезерных станках, работающих по методу обкатки, предназначенных для нарезания зубчатых колес большого диаметра, горизонтальная подача осуществляется не столом с заготовкой, а стойкой, несущей суппорт с фрезой.  [c.295]

Нарезание витков на заготовках глобоидных червяков осуществляют на универсальных зубофрезерных станках заготовка устанавливается в инструментальном шпинделе, а инструмент — на столе станка (рис. 13.9, а). Инструментом могут служить двух- и многорезцовые головки или специальные протяжки (б). Нарезание  [c.151]

При дифференциации технологических процессов широкое распространение получили станки для обработки одной поверхности за один переход у нескольких деталей (например, многошпиндельные расточные станки, ротационно-сверлильные и сверлильные с индексным столом, зубофрезерные станки на колонне непрерывного действия и т. п.).  [c.448]

Сопряженные боковые поверхности зубьев шестерни образуются в результате обкатки с инструментом, идентичным колесу данной передачи. Технологический процесс образования боковых поверхностей зубьев как колеса, так и шестерни весьма прост и не требует специального оборудования. Зубья колеса нарезаются на обычном универсальном фрезерном станке фрезой трапециевидного профиля методом деления или способом кругового протягивания, зубья шестерни нарезаются высокопроизводительным методом непрерывной обкатки на зубофрезерном станке для нарезания цилиндрических зубчатых колес. При этом заготовка шестерни устанавливается на шпинделе червячной фрезы, а инструмент закрепляется на шпинделе стола, дублируя таким образом зацепление шестерни с колесом.  [c.267]

Поверхность стола (зубофрезерные). Направляющие (зубострогальные)  [c.400]

ДЛо — определяется по шкале радиальных расстояний зубофрезерного станка или с помощью концевых мер длины, устанавливаемых между фрезерной оправкой и оправкой на столе станка  [c.303]

Для нарезания цилиндрических шестерен с бочкообразной фор мой зуба на зубофрезерных станках устанавливается специальное копирное приспособление. При опускании суппорта при фрезеровании зубчатого колеса стол или стойка станка одновременна передвигаются по копиру, обеспечивая получение бочкообразной формы зубьев. При нарезании конических шестерен с бочкообразными зубьями на зубострогальных станках модели 5283 устанавливают специальное приспособление, показанное на фиг. 168-  [c.443]


Пример 1. На фиг. 175 показан модернизированный зубофрезерный станок. Он мог нарезать зубчатые колеса диаметром до 2500 мм, а по программе завода требовалось обработать на нем большую партию венцов диаметром 3300 мм. Была проведена несложная модернизация станка для увеличения габаритов обрабатываемых на нем деталей. В месте соединения станины стола и станины стойки вставили вкладыш I шириной 400 мм, удлинили валик 2 вращения червяка стола и на стол станка установили планшайбу I. В результате такой небольшой модернизации на станке стали обрабатывать зубчатые колеса диаметром до 3300 мм.  [c.455]

Типовые конструкции столов зубофрезерных станков средних размеров (наибольший диаметр обрабатываемых изделий до 1000 мм) показаны в табл. 13.  [c.440]

Нарезание колес пальцевыми модульными фрезами (рис. 176,6) производится на универсальных фрезерных станках, оснащенных делительными головками или столами, а также на зубофрезерных станках, имеющих устройство для индивидуального деления и специальный суппорт для установки пальцевых фрез.  [c.313]

Для нарезания используют универсальные зубофрезерные станки с протяжным суппортом или специальные станки. На зубофрезерном станке дисковый обкаточный резец устанавливают на столе так, чтобы его ось скрещивалась с осью червяка под прямым углом, а линия скрещивания проходила через переднюю поверхность резцов. Нарезаемый червяк устанавливают на фрезерной оправке вместо червячной фрезы.  [c.440]

В центре стола (планшайбы, шпинделя) зубофрезерного станка устанавливается теодолит в некотором отдалении от него неподвижно укрепляется коллиматорная труба.  [c.635]

Проверка методом нанесения штрихов. На суппорте зубофрезерного станка укрепляется шлифованный валик J (фиг. 1)9). Ось валика располагается параллельно оси стола (шпинделя). На столе станка (планшайбе) на некотором расстоянии от его оси укрепляется стойка (державка) 2, несущая на себе остро заточенный резец или иглу 3, который при вращении стола (планшайбы) наносит на валике 1 тонкую риску.  [c.642]

Зубофрезерование дисковыми модульными фрезами осуществляют методом врезания с единым делением. Этим методом изготовляют зубчатые колеса невысокой точности (9 —10-й степени) его в основном применяют для чернового нарезания зубьев в условиях серийного производства. Обработку проводят на зубофрезерном станке ЕЗ-40 (4 = 320 мм т, = 8 мм) с двухпозиционным поворотным столом. Стандартные модульные фрезы не обеспечивают равномерного припуска под чистовую обработку, поэтому, когда необходим минимальный припуск, применяют специальные фрезы, спроектированные только для данного колеса. Время нарезания одной впадины зубьев 5 — 20 с. Скорость резания при обработке быстрорежущими фрезами чугунных колес 20 — 25 м/мин, стальных 25—30 м/мин. Черновое нарезание зубьев модульными фрезами можно проводить в делительной головке на фрезерном станке. Номер фрезы определяют по табл. 30 в зависимости от приведенного числа зубьев 2, = г/со8 8.  [c.358]

Нарезание с радиальной подачей осуществляется на зубофрезерных станках цилиндрической фрезой (рис. 214,6), ось которой устанавливают горизонтально, симметрично оси колеса. В процессе резания фреза 3 подается радиально на глубину зуба с подачей 0,08 — 0,50 мм/об стола и скоростью резания 20 — 25 м/мин. Чтобы зубья колеса были нарезаны полностью по всей окружности, после достижения полной высоты и выключения радиальной подачи необходим еще один полный оборот детали, прежде чем следует остановить станок. Из зацепления с колесом фрезу следует выводить до выключения работы станка, чтобы не повреждать профиль зубьев колеса. При фрезеровании с радиальной подачей параметр шероховатости поверхности зависит от числа зубьев и заходов фрезы, а также диаметра колеса. Если диаметр колеса мал, а фреза имеет небольшое число зубьев, на профиле зубьев колеса остаются широкие следы огибающих резов. Для снижения параметра шероховатости по окончании радиальной подачи целесообразно применять чистовую обработку с тангенциальной подачей. Число резов на боковой поверхности зуба можно регулировать путем изменения тангенциальной подачи. Путь тангенциальной подачи в этом случае равен примерно одному осевому шагу червячной фрезы. Метод обработки с радиальной подачей обладает высокой производительностью его применяют для обработки червячных колес невысокого качества и колес с относительно небольшим углом подъема зубьев.  [c.370]


Пример. На рис. 9.28 показана кинематическая схема полуавтоматического зубофрезерного станка. В станке имеются двигатель Д, сменные зубчатые колеса А и Б для настройки частоты вращения фрезы и сменные зубчатые колеса а, Ь, с, d, с помощью которых станок настраивается на передаточное отношение между фрезой и столом, равное числу зубьев, нарезаемых на зубчатом колесе. Например, z = 100, ас 24-54  [c.265]

Фотоэлектрический преобразователь кинематомера модели КН-3 показан на рис. 9.40, а. К вращающемуся столу зубофрезерного станка крепится плита /, на которой расположен фланец 2 с центрирующим конусом. Осевое и радиальное положение конуса регулируется с помощью специальных винтов. На центрирующий конус посажен и закреплен винтом 4 шпиндель 3, в верхней своей части несущий траверсу 13 с фотодиодами 10 и осветителями 15, а также столик 12 самописца П. На шпинделе при помощи подшипников качения установлен стакан 16 с двумя стеклянными дисками 8 и 14, на которых нанесены 5040 радиальных штрихов.  [c.277]

При отсутствии станков с горизонтальной осью шпинделя установка деталей типа шестеренных валов производится на столе зубофрезерного станка.  [c.378]

После окончательной механической обработки заготовка поступает на зубофрезерный станок. В отличие от обычного процесса в данном случае заготовка и режущий инструмент меняются местами — червяк устанавливается в суппорт, а режущий инструмент устанавливается на столе зуборезного станка. Установка червяка в суппорте станка приведена на рис. 237.  [c.404]

Черновое нарезание глобоидного червяка может осуществляться на токарном станке, оборудованном для выполнения этой операции, либо на зубофрезерном станке пальцевой или дисковой фрезой при помощи специальной фрезерной головки, установленной на столе станка [861. Черновое фрезерование глобоидного червяка сопряжено с длительной занятостью этой работой крупного, дорогостоящего и обычно сильно загруженного зубофрезерного станка. Поэтому проведение этой операции на относительно некрупном токарном станке является рациональным приемом.  [c.404]

На рис. 6.71, а показан зубофрезерный полуавтомат. На станине 7 слева установлена неподвижная стойка 3. Фрезу, закрепленную на оправке, устанавливают в шпинделе фрезерного суппорта 5, который перемещается по вертикальным направляющим стойки. Суппорт может поворачиваться в вертикальной плоскости. Заготовку закрепляют на оправке вращающегося стола 8. На корпусе стола, перемещаемом по горизонтальным направляющим станины, установлены задняя стойка б с подвижным кронштейном 7 для поддержания верхнего конца оправки. В станине расположена коробка скоростей 2,  [c.401]

Зубофрезерные станки выполняют с вертикальной и горизонтальной компоновкой. В современных станках с ЧПУ (рис. 9) вертикальной компоновки стол с заготовкой выполняют линейно неподвижным, что обеспечивает удобство загрузки станка и его автоматизации. Кроме линейную перемещений по осям X, Y, Z в этих станках выполняется управление вращением фрезерной головки А, фрезы В и стола станка С, При этом в отличие от обычных станков у этих станков сложные кинематические цепи заменены электронными связями и индивидуальными приводами, что позволяет упростить конструкцию станков, исключив рад механизмов, повысить жесткость и точность изготовления деталей.  [c.568]

Приспособление размещают на столе зубофрезерного станка и его корпус 1 крепят болтами. Внутри корпуса встроен пневмоцилиндр с поршнем 2 и крышкой. В приспособлении расположена плавающая втулка 8 с клиньями 9. На корпусе 1 приспособления установлена и закреплена винтами втулка, на наружной поверхности которой закреплены шесть шпонок 6. Обрабатываемые зубчатые колеса центральным базовым отверстием устанавливают и предварительно центрируют шестью шпонками 6 неподвижной втулки.  [c.227]

На рис. 123 показаны гладкие оправки для обработки зубьев на зубодолбежных (рис. 123, а), зубофрезерных (рис. 123, б) и зубострогальных (рис. 123, в) станках. Оправки закрепляются неподвижно на вращающемся столе или в шпинделе станка посредством конуса. Обрабатываемые зубчатые колеса надеваются на центрирующую часть оправки и зажимаются при помощи гайки и шайбы.  [c.201]

Погрешность обката обычно выявляют на кинематомерах, позволяющих установить несогласованность движения режущего инструмента (фрезы) и заготовки зубчатого колеса (стола станка) при зубообразовании. Так, на зубофрезерных станках (схема VI табл. 13.1) преобразователь / выдает импульсы, характеризующие угловое положение етола станка, а преобразователь 2 — импульсы, характеризующие положение шпинлеля. Блок 3 служит для приведения масштаба импульсов высокоскоростного звена 2 к масштабу тихоходного звена / станка. После сравнения импульсов в устройстве 4 разность фаз, пропорциональная погрешности углового по-  [c.331]

В итоге выполнения пятой пятилетки производственная плош адь станкозаводов увеличилась на 40%, оборудование их значительно модернизировалось и обновилось. Свыше 100 типоразмеров станков было заменено и выпуш,ено более 400 новых типоразмеров уникальных специализированных, агрегатных и специальных станков. Коломенский завод освоил выпуск тяжелых карусельных станков для обточки изделий диаметром 7, 9, 13 и 16 м, зубофрезерных станков для колес диаметром до Ъ м тл весом свыше 180 т. Новокраматорский завод наладил производство тяжелых крупногабаритных токарных станков, рассчитанных на обработку деталей диаметром от 1250 до 4000 мм. Московский завод им. Серго Орджоникидзе освоил токарно-копировальные гидравлические полуавтоматы для изделий диаметром 125, 200, 320 мм и длиной 500—1500 мм. На Горьковском заводе фрезерных станков созданы продольно-фрезерные станки с шириной стола от 920 до 3000 мм и длиной до 12 ООО мм. Ленинградский завод им. Свердлова стал производить горизонтально-расточные станки с диаметром шпинделя до 150 мм, а Новосибирский завод — такие же станки с диаметром шпинделя 200 мм. На Харьковском станкозаводе разработаны круглошлифовальные станки для изделий диаметром 400 мм и длиной 2000 мм. Было изготовлено и внедрено до 300 автоматических линий, создан автоматический цех подшипников на Первом ГПЗ. Эти итоги показывают замечательное количественное и качественное развитие станкостроения к концу пятилетки.  [c.82]


На зубофрезерных станках с вертикальной осью приходится нарезать зубчатые колеса, имеющие вес приближающийся или несколько превышающий допустимую нагрузку стола. В конструкции некоторых таких станков предусмотрены разгрузочные устройства для уменьшения сил трения на опорной поверхности и для повышения равномерности хода стола. В современных станках эти механизмы выполняются гидращлическими и механическими. В некоторых случаях при обработке деталей большого веса применяют и дополнительные меры предосторожности — устанавливаются поддерживающие ролики под обод планшайбы или нарезаемого колеса, которые воспринимают усилия резания,  [c.447]

И последующей обработки отверстий в деталях больших габаритов, которые не могут устанавливаться на обычных сверлильных станках. Для строгания плоскостей крупных корпусных деталей (типа рам, станин, корпусов машин) создаются мощные продольно-строгальные станки с движущимся столом длиной 3—4 м и более. Появляются продольно- и карусельно-фрезерные станки, позволяющие обрабатывать одновременно по нескольку массивных деталей. Наряду с обычными шлифовальными станками конструируются круглошпифовальные станки для наружного шлифования, для внутреннего шлифования и т. д. Создается оборудование, специально предназначенное для нарезания зубьев в зубчатых колесах зубофрезерные, зубодолбежные, зубострогальные станки. Усложнение деталей машин и специализация металлообработки приводят к появлению шлицефрезерных, шпоночно-фрезерных, протяжных, хонинговальных и других специальных станков [8].  [c.21]

Принципиальная схема (см. рис. 48) измерительной системы включает в себя датчики 7 и 2 углов поворота, установленные один — на оправке 4 фрезы, другой - на столе 3 зубофрезерного станка. Выходы с датчиков подключены к кинематомеру 5, типа КН-6, соединенному с последовательно включенными усилителем 6 постоянного тока, аналого щфровым преобразователем (АЦП) 7, мини-ЭВМ 8 и цифровым печатающим блоком 9. К выходу усилителя 6 последовательно подключены анализатор 10 релейного времени и дисплей II, соединенный с ЭВМ 8. Сигнал о кинематической погрешности с кинематомера 5 после усиления в 6 преобразуется в АЦП 7 и подается на ЭВМ 8, в которой производится спектральный анализ сигнала с определением частот, амплитуд и фаз спектральных составляющих и интегрального уровня сигнала, а также суммирование и сравнение составляющих по группам, проявление каждой из которых связано с функционированием соответствующих элементов кинематической цепи зубофре-  [c.239]

Здесь корректирующие перемещения от кругового копира I, расположенного на столе станка, с помощью рычага 2, тяги 3 и рейки 4 передаются в гитару дифференциала станка (устройство предназначено для корректирования ошибок делительной цепи универсального зубофрезерного стан-(sa). Суммирование добавочного корректи-  [c.295]

Суммарная (полная) погрешность цепи, связывающей движение суппорта (люльки, штосселя) с враше-нием стола (планшайбы, шпинделя) Дефекты изготовления, монтажа или износ звеньев цепи подачи суппорта (обката люльки) Погрешности относительных перемещений суппорта (люльки) и в первую очередь ходового винта и его опор У зубчатых колес а) погрешности осевого шага (направления зубьев), сокращение и смешение пятна контакта зубьев б) погрешности профиля У винтов накопление погрешности, внутришаговые погрешности как проявление функциональной кинематической ошибки станка Относится а) к зубофрезерным станкам б) к станкам для обработки конических колес, кроме зубофрезерных  [c.630]

Определение суммарной ошибки цепи деления зубофрезерного станка. Для контроля кинематической точности делительной цепи зубофрезерного станка на столе станка закрепляется диск, который по боковой цилиндрической поверхности протачивается на самом станке, чем устраняется влияние на результат измерения неточности установки диска. На проточенную поверхность диска накладывается тонкая лента, например киноп.ченка, которой обтягивается цилиндрическая поверхность диска.  [c.636]

Если функция ошибки кинематической цепи определена в результате измерений и детальной обработки в виде формулы (1), то по самому виду выражения (2), сопоставляемого с кинематической схемой цепи, могут быть установлены главные причины, порождающие неточности работы цепи. Для этого следует по кинематической схеме контролируемой цепи уста-новипъ число циклов, совершаемых различными звеньями цепи за один полный цикл ведомого звена. Например, для делительной цепи зубофрезерного станка вопрос сводится к определению передаточных отношений от стола станка к делительному червяку и к другим быстроходным звеньям цепи. Соответствующие различным звеньям передаточные отношения следует сопоставить с частотами членов ряда (1), и если в ряду (1) имеется член с частотой, равной передаточному числу к определенному звену цепи, то эта составляющая ошибки вероятнее всего вызывается ошибкой изготовления или монтажа данного звена. Часто ряд (1)  [c.647]

Для проверки согласованности вращения двух звеньев кинематической цепи зубофрезерного станка в условиях сборки и регулировки отдельных узлов и станка в целом применяется ленточно-фрикционный прибор. Схема этого прибора для случая проверки согласованности вращения стола и фрезерной оправки зубофрезерного станка приведена на рис. 9.31. Вращение от фрезерной оправки с помощью шкива /, натяжных роликов и стальной ленты передается на входную ось прибора 2 и далее, через ряд постоянных и сменных роликов фрикционного действия 3—7 п 9 — на выходную ось прибора 8. На этой же оси свободно посажен диск U, который получает вращение с помощью стальной ленты от диска 13, жестко закрепленного на столе станка. Контролируемая погрешность кинематической цепи станка на участке от фрезерной оправки до стола станка определяется относительными смещениями диска 11 и оси 8, которые действуют на датчики 10 и 12 а регистрируются элект1юиндуктивным самопишущим устройством Это устройство позволяет контролировать как местные, так и общую погрешности цепи обката станка. На точность работы прибора оказывает влияние проскальзывание во фрикционных и ленточных  [c.267]

Контактно-етробоскопический прибор для контроля согласованности вращения стола и шпинделя фрезерной оправки зубофрезерных станков [1 состоит из трех основных частей датчика тихоходного стола, индикатора быстроходной фрезерной оправки и электроусилителя.  [c.270]

Датчик стола (рис. 9.33, а) выполнен в виде диска с четным числом пазов по пери4№рин, равномерно расположенных по окружности. В пазах диска параллельно его оси закреплены цилиндрические ролики, выступающие над торцовой плоскостью. Диск с роликами 2 и 3 устанавливается в центре стола зубофрезерного станка и закрепляется. Над ним, в соосном неподвижном кронштейне станка, закрепляется рамка с цилиндром, поворачивающимся в горизонтальных центрах. На концах цилиндра укреплены ножи, лезвия I которых лежат на одной линии, параллельной оси цилиндра. Ножи между собой электрически разомкнуты.  [c.270]

Эта закономерность полностью сохраняется, если позиции машины параллельного действия располагать не в линию, а по окружности (рис. 3, в), для удобства обслуживания и равномерного расхода энергии смещать по фазе рабочий цикл иа позициях (рис. 3, г). Схема (рис. 3, г) неудобна тем, что место загрузки все время меняется, перемещаясь по окружности со скоростью, задаваемой числом оборота распределительного вала относительно неподвижного стола. При ручной загрузке рабочий вынужден все время двигаться вокруг машины, а при автоматической — необходимо иметь р загрузочных механизмов, поэтому компоновка из таких машин автоматических линий практически невозможна. Для устранения этого противоречия недостаточно, не изменяя относительных дщтжений рабочих органов в машине, остановить распределительный вал и дать столу вращение в обратную сторону (рис. 3, д). Такая схема, по которой еще в 20-е годы были построены токарные полуавтоматы типа Буллард , зубофрезерные многопозиционные станки, многочисленные автоматы пищевой промышленности и т. д., получила название роторной. Сравнение этой схемы с другими конструктивными вариантами машин параллельного агрегатирования (рис. 3, б—г) показывает, что роторный принцип сам по себе не дает никакого выигрыша в производительности, так как технологический процесс (последовательность и режимы обработки) полностью сохраняется, остаются неизменными рабочие и холостые хода, а также технологические механизмы, которые не становятся надежнее в работе. Поэтому производительность роторных машин подчиняется общим закопал агрегатирования рабочих машин. Это общее свойство всех машин параллельного действия, как стационарных (рис. 3, б—г), так и роторных (рис. 3, д). В обоих случаях производительность может быть повышена путем увеличения числа позиций р, однако, как показывает формула (6), рост производительности непропорционален увеличеиик> числа позиций р, так как с ростом числа позиций растут и внецик-ловые потери р Q + 4), а коэффициент использования снижается. В результате производительность машин параллельного агрегатирования, в том числе и роторных машин, повышается не беспредельно, как некоторые считают, а стремится к некоторому пределу, который целиком определяется надежностью механизмов машины. Если же роторные машины сблокированы в линию, то  [c.10]


А. В Милане, в 1335 г. Б. Нюрнбергский механик П. Хенлейи, в 1510 г. В. X. Гюйгенс воспользовался эффектом изохронности малых колебаний маятника (независимость периода его колебаний от амплитуды), открытым Г. Галилеем. Г. Выдающимся механиком И. П. Кулибиным — Б России и часовым мастером П. Лерца — во Франции (независимо) в целях устранения погрешностей работы часов, связанных с изменениями температуры окружающей среды, было предложено использовать для изготовления маятников биметалл (материал, состоящий из двух металлов). 5. а) Координатно-расточной станок, для финишной обработки отверстий, расположение которых должно быть точно выдержано, а также для прецизионных фрезерных и других точных работ, б) Зубодолбежный полуавтомат, для обработки цилиндрических прямозубых и косозубых колес с наружным и внутренним зацеплением, посредством круглых (зубчатых) долбяков, методом обкатки, в) Многооперацион-ный станок с ЧПУ, для обработки заготовок корпусных деталей на одном рабочем месте с автоматической сменой инструмента, г) Круглошлифовальный станок, для наружного шлифования в центрах заготовок деталей типа тел вращения, д) Вертикально-сверлильный станок, для сверления, зенкерования, зенкования, развертывания отверстий, подрезания торцов изделий и нарезания внутренних резьб метчиками, е) Токарно-револьверный станок, для обработки заготовок с использованием револьверной головки, ж) Радиально-сверлильный станок, для сверления, рассверливания, зенкерования, развертывания, растачивания и нарезания резьб метчиками в крупных деталях, з) Поперечно-строгальный станок, для обработки плоских и фасонных поверхностей сравнительно небольших заготовок, и) Горизонтально-расточной станок, для растачивания отверстий в крупных деталях, а также для фрезерных и других работ, к) Плоскошлифовальный станок, для шлифования периферий круга плоскостей различных заготовок при возвратнопоступательном движении стола и прерывистой поперечной подаче шлифовальной бабки, л) Зубофрезерный полуавтомат, для фрезерования зубьев цилиндрических прямозубых и косозубых шестерен, для обработки червячных колес методом обкатки червячной фрезой,  [c.146]

Фрезерные станки имеют весьма широкую область применения и разделяются на две основные группы станки общего назначения и специализированные. К первой группе относятся станки консольные и бесконсольные, продольно-фрезерные, станки непрерывного фрезерования (карусельные и барабанные). Ко второй группе относятся станки копировально-фрезерные, зубофрезерные, резьбофрезерные, шпоночно-фрезерные, шлицефрезерные и др. Типоразмеры станков характеризуются площадью рабочей (крепежной) поверхности стола или размерами обрабатываемой заготовки (при зубо- и резьбообработке). По указанному признаку станки имеют пять градаций  [c.181]

КОРРЕКТИРУЮЩИЙ М. ЗУБОФРЕЗЕРНОГО СТАНКА — устр,, которое установлено в кинематической цепи, связывающей инструмент и стол станка, сообщает дополнительные движения столу и компенсйрует движения, обусловленные ошибками кинематической цепи.  [c.141]

Установка и зажим зубчатых колес при нарезании на них зубьев производятся на различных приспособлениях. Способ обработки зубьев определяет вид приспособления к зубообрабатывающим станкам. В зависимости от группы станка эти приспособления делят на типы зубофрезерные, зубодолбежные, зубострогальные, зу-бошевинговальные, зубошлифовальные и т. д. Конструкция приспособления к зубообрабатывающим станкам зависит также от габаритных размеров зубчатых колес, степени точности их изготовления, формы и размеров базовых поверхностей и от установочных мест стола или шпинделя станка, на которые приспособление устанавливают.  [c.225]

В качестве оборудования применяется либо специальный, либо обычный зубофрезерный станок с протяжным ynnqpTOM. Долбяк устанавливается в оправке на столе станка, а заготовка на суппорте. Осевое перемещение, необходимое при нарезании цилиндрических червяков, совершает заготовка. Для глобоидальных червяков вместо осевого перемещения используется радиальная подача. Этот метод нашел наибольшее применение для обработки глобоидальных червяков.  [c.194]


Смотреть страницы где упоминается термин Зубофрезерные Столы : [c.446]    [c.355]    [c.31]    [c.631]    [c.641]    [c.315]   
Машиностроение Энциклопедический справочник Раздел 4 Том 9 (1950) -- [ c.440 , c.446 ]



ПОИСК



322, 338—343, 367—370 — Столы

325 — 327 зубофрезерные

Зубофрезерные Приводы столов с двумя ведущими червяками

Зубофрезерные Столы круглые для вращения заготово

Зубофрезерные Столы, контрподдержки

Столы без стола

Столы зубодолбежных станковРазмеры зубофрезерных станков Размеры



© 2025 Mash-xxl.info Реклама на сайте