Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип Гамильтона-Остроградского дифференциальный

Пользуясь принципом Гамильтона — Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение колебаний струны.  [c.377]

Пользуясь принципом Гамильтона — Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение малых колебаний подвешенной за один конец нити.  [c.377]

Пользуясь принципом Гамильтона — Остроградского, составить дифференциальное уравнение продольных колебаний тонкого стержня, заделанного на одном конце и с массой т на другом конце, и получить граничные условия. Плотность материала стержня р, модуль продольной упругости Е, площадь поперечного сечения Р, длина I,  [c.377]


Получение дифференциальных уравнений Лагранжа второго рода из принципа М. В. Остроградского и канонических уравнений из принципа Гамильтона — Остроградского  [c.198]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]

Пользуясь принципом Гамильтона — Остроградского, со< ставить дифференциальное уравнение поперечных колебаний шарнирно опертой балки, а также получить граничные условия. Плотность материала балки р, модуль продольной упругости Е, площадь поперечного сечения F, момент инерции поперечного сечения /, длина балки I.  [c.378]

О вариационных принципах. Вариационными принципами классической механики называют общие закономерности механического движения, позволяющие из совокупности кинематически возможных движений механической системы, т. е. движений, допускаемых наложенными на систему связями, выделить действительное движение, которое она будет совершать в заданном силовом поле. При этом дифференциальные вариационные принципы дают критерий истинного движения, отнесенный к некоторому моменту времени (например, принцип возможных перемещений), а интегральные — к конечному интервалу времени (например, принцип Гамильтона—Остроградского).  [c.308]

Вывод канонических уравнений Гамильтона из принципа Гамильтона — Остроградского. Из принципа Гамильтона—Остроградского можно получить и другую форму дифференциальных уравнений движения голономной механической системы — канонические уравнения Гамильтона. Будем предполагать, что на рассматриваемую систему наложены идеальные голономные связи, а действующие на точки системы активные силы обладают силовой функцией и. Принцип Гамильтона для такой системы запишется в виде равенства  [c.465]


Применение методов аналитической механики к решению нетривиальных задач требует уже при составлении уравнений подробных сведений по вопросам, на которых, как правило, останавливаются весьма кратко. В связи с этим в книге значительное внимание уделено способам введения обобщенных координат, теории конечных поворотов, методам вычисления кинетической энергии и энергии ускорений, потенциальной энергии сил различной природы, рассмотрению сил сопротивления. После этих вводных глав, имеющих в известной степени и самостоятельное значение, рассмотрены методы составления дифференциальных уравнений движения голономных и неголономных систем в различных формах, причем обсуждаются вопросы их взаимной связи подробно рассмотрены вопросы определения реакций связей и некоторые задачи аналитической статики. Мы считали полезным привести геометрическое рассмотрение движения материальной системы, как движение изображающей точки в римановом пространстве этот материал нашел, далее, применение в задачах теории возмущений. Специальная глава отведена динамике относительного движения, к которому приводятся многочисленные прикладные задачи. Далее рассмотрены канонические уравнения, канонические преобразования и вопросы интегрирования. Значительное место уделено теории возмущений и ее разнообразным применениям. Последняя глава посвящена принципу Гамильтона—Остроградского, принципу наименьшего действия Лагранжа и теории возмущений траекторий.  [c.9]

Применим принцип Гамильтона — Остроградского для вывода дифференциальных уравнений малых колебаний нерастяжимой цепной линии. Покажем прежде всего, как с помощью этого принципа получается уравнение равновесия цепной линии. Потенциальная энергия силы тяжести, отнесенная к единице длины нити, равна ду (см. формулу (2.1.15)), поэтому потенциальная энергия П всей нити будет  [c.227]

Уравнения (16.2) определяют тензор напряжений через мате-риальные"координаты и входящие в представление вектора места К параметры Л, В, С и т. д., далее здесь обозначаемые [х , и их первые и вторые производные по времени. Дифференциальные уравнения, их определяющие, диктуются краевыми условиями подобно тому, как получались конечные соотношения между ними 10—15. Но представляется, что проще ведет к цели прием составления этих уравнений, использующий принцип Гамильтона — Остроградского.  [c.308]

В работе [1.25] (1959) приведены дифференциальные уравнения динамики стержней (растяжение, изгиб, кручение) с сечением произвольной формы. Учитываются эффекты инерции вращения и деформации сдвига. Вывод уравнений основан на введении соответствующих гипотез и применении вариационного принципа Гамильтона — Остроградского. В случае упруго-пластического деформирования по аналогии рассмотрены поперечные и крутильные колебания.  [c.47]

Заслуживает внимания применение общего уравнения динамики к проблеме приведения [3.43]. В основе метода лежит аппроксимация искомых функций конечными рядами (не обязательно степенными), а затем реализация вариационного принципа, приводящего к приближенным дифференциальным уравнениям и соответствующим краевым условиям. Этим методом Д. В. Бабич в 1966 г. построил динамическую теорию оболочек в криволинейных координатах с учетом несимметричности тензора напряжений [3.14]. Он исходил из аппроксимации компонент вектора перемещений и вектора вращений конечными степенными суммами и из вариационного принципа Гамильтона—Остроградского и вывел дифференциальные уравнения движения и естественные краевые условия.  [c.186]

О. И. Сомов. Замечания, относящиеся к принципу наименьшего действия. — Матем. сб., 1870, т. 5 И. Д. соколов. О начале наименьшего действия.— Матем. сб., 1870, т. 5 В. П. Ермаков Принцип наименьшего действия в связи с преобразованиями дифференциальных уравнений второго порядка.— Киевские Университетские Известия, 1891 Г. К.[Суслов. К вопросу о начале наименьшего действия.— Там те Д. к. Бобылев. О начале Гамильтона или Остроградского и о начале наименьшего действия.— Приложение к 61-му тому Записок Академии наук . СПб., 1889.  [c.218]


Гамильтон в работах по динамике и оптике, относящихся к середине тридцатых годов девятнадцатого столетия, сформулировал принцип стационарного действия для свободной системы материальных точек и системы точек, подчиненных стационарным связям. Это ограничение в 1848 г, ) было снято Остроградским, который, не зная работ Гамильтона, опубликованных в мало распространенных тогда трудах Ирландской Академии наук, с полной ясностью изложил принцип в работе о дифференциальных уравнениях изопериметрической задачи, распространив его и на нестационарные связи.  [c.646]

Принципы механики подразделяются еще на невариационные и вариационные. Невариационные законы устанавливают соотношение между величинами, имеющими место для действительного движения. Вариационные устанавливают признаки, отличающие действительное движение от всех других движений, кинематически возможных. Примером вариационных дифференциальных принципов служит принцип возможных перемещений и общее уравнение механики. Известен ряд вариационных интегральных принципов, обладающих различной общностью. Наиболее общим является принцип, установленный Гамильтоном и обобщенный Остроградским, или принцип экстремального действия.  [c.211]

Движение линейных Н. с. можно изучать с помощью Чаплыгина уравнений, Аппеля уравнений и др. G учётом условий (3) эти ур-ния люгут быть получены из дифференциальных принципов Д Аламбера — Лагранжа принцип и Гаусса принцип) или же из обобщённого интегрального принципа Гамильтона — Остроградского.  [c.251]

В двух работах М. Ш. Аминова Об устойчивости вращения твердого тела переменной массы вокруг неподвижной точки (1958) и Некоторые вопросы движения и устойчивости твердого тела переменной массы (1959) содержатся некоторые общие результаты для системы ге материальных точек переменной массы, подчиненной идеальным голонохмным связям, формулируется принцип Гамильтона — Остроградского, который затем применяется к выводу дифференциальных уравнений движения твердого тела переменной массы вокруг неподвижной точки и для  [c.305]

Горак выводит для склерономной и реономной неголономных систем в голономных и неголономных координатах, а также в склерономных параметрах обобщенные уравнения Ньютона, Лагранжа — Эйлера и Аппеля — Гиббса. Из этих уравнений получаются как частные случаи уравнения Больцмана, Чаплыгина — Воронца, Ценова и др. Из уравнений Горака можно получить также обобщенный принцип Гамильтона — Остроградского и обобщенные уравнения неголономной динамики в канонической и естественной формах. С целью упрощения установленных им уравнений 3. Горак строит неголономное многообразие со специальной метрикой — вселенную системы. Во вселенной системы, как оказывается, уравнения Лагранжа—Эйлера и Аппеля — Гиббса получают весьма простой вид. Во вселенной обобщаются также вариационные принципы механики — принципы Гаусса — Герца наименьшей кривизны и Гамильтона — Остроградского наименьшего действия. 3. Горак показывает, что принцип Гамильтона — Остроградского эквивалентен уравнениям линии вселенной . Рассматривая время как временной параметр и вводя понятие пространственно-временной силы , 3. Го-раку удалось значительно упростить выражения дифференциальных урав- 105 нений движения неголономной системы.  [c.105]

Вывод дифференциальных уравнений движения ОТС основан на обобщенном принципе Гамильтона-Остроградского с учетом нерастя-жимости троса  [c.407]

При решении дифференциальных уравнений с обыкновенн частными производными важно понимать, в каких функционал пространствах следует рассматривать их решения и доказывать ремы об их существовании. Ответ на этот вопрос связан с вар ной формулировкой соответствующей задачи, на основе которой ределяются обобщенные решения. Этот подход во многом сов с вариационными принципами механики и, в частности, с вар онньш принципом Гамильтона-Остроградского. Понимание этих стоятельств важно для построения вычислительных алгоритмов, 01 ки их сходимости и исследования устойчивости движений.  [c.276]

Разделение мехапич. систем на голономные и неголо-номные весьма существенно, так как к Г. с. применимы многие сравнительно простые ур-ния механики и общие принципы, к-рые не справедливы для неголопом-ных систем. Движение Г. с. может изучаться с помощью Лагранжа уравнений механики, Гамильтона уравнений, Гамильтона — Якоби уравнения, а также с помощью наименьшего действия принципа В форме Гамильтона — Остроградского или Мопертюи — Лагранжа. К Г, с. приложимы также все те общие теоремы механики и дифференциальные вариационные принципы механики, К-рые справедливы и для неголономных систем.  [c.515]

Движение линейных Н. с. можно изучать с помош,ью Чаплыгина уравнений, Аппеля уравнений, ур-ний в квазикоординатах Гамеля [5] и др. С учетом условий (3) эти ур-ния могут быть получены из дифференциальных вариационных принципов Д Аламбера — Лагранжа принцип и Гаусса принцип) или же из обобщенного интегрального прпнцина Гамильтона—Остроградского — принципа Воронца—Суслова [3, 4].  [c.368]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]


В изложенном выводе принципа Остроградского — Гамильтон уравнения Лагранжа выступают в новой роли — необходимых достаточных условий стационарности функционала 5 на действи тельном пути системы. Тем самым устанавливается эквивалеш ность задачи об интегрировании дифференциальных уравнени при заданных краевых условиях с вариационной задачей нахожде ния экстремума функционала и, таким образом, открывается воа можность привлечения к решению вибрационных задач методе вариационного исчисления.  [c.38]


Смотреть страницы где упоминается термин Принцип Гамильтона-Остроградского дифференциальный : [c.713]    [c.186]    [c.108]    [c.113]    [c.903]   
Теоретическая механика (1999) -- [ c.102 ]



ПОИСК



Гамильтон

Гамильтона дифференциальное

Зэк гамильтоново

Остроградский

Получение дифференциальных уравнений Лагранжа второго рода из принципа М. В. Остроградского и канонических уравнений из принципа Гамильтона — Остроградского

Принцип Гамильтона

Принцип Гамильтона—Остроградского

Принцип Остроградского

Принцип Остроградского. Принцип Гамильтона — Остроградского

Принципы дифференциальные



© 2025 Mash-xxl.info Реклама на сайте