Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтона дифференциальное

Оператор Гамильтона дифференциальный 337 Определимость статическая 267 Орбита 49 Орт вектора 20 Ось винта 146  [c.464]

Пользуясь результатами, полученными при решении предыдущей задачи, составить для канонических переменных Гамильтона дифференциальные уравнения малых колебаний волчка около верхнего вертикального положения.  [c.375]

Галилея преобразование 22 Гамильтона дифференциальное уравнение в частных производных 300  [c.363]


Свободная точка единичной массы движется в вертикальной плоскости ху под действием силы тяжести. Составить дифференциальное уравнение в частных производных Якоби— Гамильтона и найти его полный интеграл (ось у направлена вертикально вверх).  [c.376]

Физический маятник массы М вращается вокруг неподвижной горизонтальной оси. Момент инерции маятника относительно этой оси равен /, расстояние от центра масс маятника до оси равно I. Составить дифференциальное уравнение Якоби — Гамильтона, найти его полный интеграл и первые интегралы движения маятника (нулевой уровень потенциальной энергии взять на уровне оси маятника).  [c.376]

Пользуясь принципом Гамильтона — Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение колебаний струны.  [c.377]

Пользуясь принципом Гамильтона — Остроградского и результатами решения предыдущей задачи, составить дифференциальное уравнение малых колебаний подвешенной за один конец нити.  [c.377]

Пользуясь принципом Гамильтона — Остроградского, составить дифференциальное уравнение продольных колебаний тонкого стержня, заделанного на одном конце и с массой т на другом конце, и получить граничные условия. Плотность материала стержня р, модуль продольной упругости Е, площадь поперечного сечения Р, длина I,  [c.377]

Уравнения Лагранжа (41) представляют собой п обыкновенных дифференциальных уравнений второго порядка для обобщенных координат q . Эти уравнения многими способами можно свести к системе 2п уравнений первого порядка путем введения новых переменных. Канонические уравнения или уравнения Гамильтона дают такую систему дифференциальных уравнений первого порядка, эквивалентную уравнениям Лагранжа, в наиболее удобной симметричной форме.  [c.416]

Из системы уравнений Гамильтона (д ) путем дифференцирования первого уравнения по времени и подстановки р в полученное выражение из второго уравнения получим дифференциальное уравнение для определения q  [c.418]

Рассмотрим метод, предложенный Гамильтоном , позволяющий S уравнений Лагранжа вида (126.3) преобразовать в систему 2s обыкновенных дифференциальных уравнений первого порядка, называемых каноническими уравнениями Гамильтона.  [c.366]


Уравнения (132.5) называются каноническими уравнениями механики, или уравнениями Гамильтона. Уравнения Гамильтона представляют собой систему обыкновенных дифференциальных уравнений первого порядка. Интегрирование этих уравнений дает 25 величии с/,, (/2..... qs, Ри Рг,. ..у Ps в функции времени t и 2s  [c.369]

Обратим теперь внимание на следующую особенность интегрального инварианта Пуанкаре — Картана. Если в дифференциальных уравнениях движения —все равно в уравнениях Лагранжа или Гамильтона — время t было выделено и входило иначе, чем координаты, так как по времени велось дифференцирование, то в контурный интеграл (85) дифференциал dt входит совершенно так же, как дифференциалы dqj. Если бы мы рассматривали время как дополнительную координату <7 +i, а в качестве импульса, соответствующего зтой координате, взяли гамильтониан с обратным знаком 1), то контурный интеграл (85) можно было бы переписать так  [c.296]

Уравнения (1.27) и (1.29) образуют систему 2п обыкновенных дифференциальных уравнений первого порядка, которые называются уравнениями Гамильтона [3, 5, 10].  [c.14]

Уу (/ = 1,. .., л), приводящее систему (2. 92) к нормальной форме. Нормальной формой системы уравнений (2.92) будем называть такую систему дифференциальных уравнений, которой соответствует функция Гамильтона, равная алгебраической сумме гамильтонианов п линейных, не связанных между собой осцилляторов  [c.125]

Следствие 9.5.2. Сохранение интеграла Пуанкаре есть необходимое и достаточное условие того, что заданная система дифференциальных уравнений есть система канонических уравнений Гамильтона.  [c.664]

Перейдем к изучению инвариантов систем канонических уравнений Гамильтона, получающихся интегрированием по объему фазового пространства. Сначала докажем теорему Лиувилля об интегральном инварианте произвольной системы дифференциальных уравнений. Пусть движение точки пространства Л переменных х, .., ,Хт задано с помощью следующей системы дифференциальных уравнений  [c.668]

На примере циклических координа.т мы видели (см. 8.4), что успех интегрирования систем дифференциальных уравнений, описывающих движение механических систем, в значительной мере зависит от удачного выбора лагранжевых координат. При переходе от одних лагранжевых координат к другим будут по определенному закону изменяться и обобщенные импульсы, так что в новых фазовых переменных уравнения движения вновь примут вид канонических уравнений Гамильтона. Произвольные преобразования фазовых координат таким свойством, вообще говоря, обладать не будут. Интегральный инвариант Пуанкаре (определение 9.5,1) позволяет, подходя с единых позиций как к преобразованию лагранжевых координат, так и обобщенных импульсов, выделить специальный класс преобразований фазовых переменных, не нарушающих структуру канонических уравнений движения.  [c.680]

Равенства (62.53) — канонические уравнения Гамильтона. Они представляют систему 2s дифференциальных уравнений первого порядка относительно канонических переменных. Постоянные интеграции этих уравнений определяются из начальных условий.  [c.91]

Исключим обобщенные скорости из основных величин, входящих в дифференциальные уравнения движения, и введем в них обобщенные импульсы. Конечно, при этом изменится вид соответствующей функции. Поэтому функции канонических переменных обозначаются ниже дужкой над буквой, обозначающей функцию. Например, функция Лагранжа в канонических переменных обозначается А, обобщенные силы в канонических переменных обозначаются Qj и т. д. Но функция Гамильтона Н в канонических переменных обозначается Н.  [c.145]

Получение дифференциальных уравнений Лагранжа второго рода из принципа М. В. Остроградского и канонических уравнений из принципа Гамильтона — Остроградского  [c.198]

Возникает вопрос о непосредственном применении вариационных принципов механики для определения закона движения системы материальных точек без интегрирования соответствующей системы дифференциальных уравнений движения. Ответ на этот вопрос можно найти в прямых методах вариационного исчисления. Не рассматривая этот вопрос подробно, так как такое рассмотрение выходит за пределы содержания этой книги, остановимся на некоторых частных случаях непосредственного применения принципа Гамильтона — Остроградского к решению задач динамики.  [c.210]


Таким образом, вопрос об интегрировании системы канонических уравнений динамики приведен к интегрированию дифференциального уравнения (11.350) в частных производных первого порядка. Дифференциальное уравнение (11.350) далее будем называть уравнением Остроградского — Гамильтона — Якоби )  [c.356]

Чтобы найти общее решение системы канонических, уравнений динамики, достаточно найти функцию V как полный интеграл дифференциального уравнения с частными производными первого порядка уравнения Остроградского — Гамильтона — Якоби) и продифференцировать этот интеграл по обобщенным координатам и постоянным интегрирования а . Приравнивая частные производные от V по обобщенным координатам обобщенным импульсам р , получим первую группу интегралов канонической системы, а приравнивая постоянным интегрирования производные от V по а , найдем вторую группу интегралов.  [c.358]

Теорема Якоби — Пуассона. Пусть переменные Pi удовлетворяют дифференциальным уравнениям Гамильтона  [c.283]

Теорема. При каноническом преобразовании (А) любая гамильтонова система дифференциальных уравнений (1) переходит снова в гамильтонову систему [вообще говоря, с другой функцией Гамильтона t))  [c.290]

Большой вклад в разработку новых методов интегрирования дифференциальных уравнений динамики внесли Гамильтон и немецкий ученый Якоби (1804—1851).  [c.16]

КАНДЕЛА (от лат. andela — свеча) (кд, d), единица СИ силы света К. — сила света, испускаемого с площади 1/600000 м сечения полного излучателя (см. Световые эталоны) в перпендикулярном к этому сечению направлении при темп-ре излучателя, равной темп-ре затвердевания платины (2042 К), и давлении 101 325 Па. КАНДЁЛА НА КВАДРАТНЫЙ МЕТР (кд/м , d/m ), единица СИ яркости равна яркости светящейся плоской поверхности площадью 1 м в перпендикулярном к ней направлении при силе света 1 кд. 1 кд/м —10 стильб— Л Л0 ламберт. Прежнее наименование ед.— нит. КАНОНИЧЕСКИЕ УРАВНЕНИЯ МЕХАНИКИ (уравнения Гамильтона), дифференциальные ур-ния движения механич. системы (выведенные ирланд. учёным У. Гамильтоном в 1834), в к-рых переменными, кроме обобщённых координат q , явл. обобщённые импульсы Pi, совокупность qi и Pi наз. канонич. переменными. К- у. м. имеют вид дН  [c.241]

Составить функцию Гамильтона и канонические уравнеипя движения для математического маятника массы гп и длины /, положение которого определяется углом ф отклонения его от вертикали. Проверить, что полученные уравнения эквивалентны обычному дифференциальному уравнению движения математического маятника.  [c.374]

Пользуясь принципом Гамильтона — Остроградского, составить дифференциальное уравнение поперечных колебаний шарнирно опертой балки, а также получить граничные условия. Плотность материала балки р, модуль продольной упругости Е, площадь поперечного сечения Е, момент ииерцип поперечного сечения У, длина балки I.  [c.378]

Это дифференциальное уравнение в частных производных называется уравнением Гамильтона — Якоби. Таким образом, мы получили дифференциальное уравнение первого порядка в частных производных, которому должна удовлетворять производящая функция q .,. .., qs, ai, 2,. .., a.,, t) с основными перемои-  [c.154]

Решение дифференциального уравнения в частных п]ю-изводных, содержащее столько произвольных постоянных, сколько имеется независимых переменных, называется полным интегралом этого уравнения. Функция ) в уравнение (6.12) входит только 1ерез свои производные. Это значит, что одна произвольная постоянная будет входить в полный интеграл в виде слагаемого, т. е. полный интеграл уравнения Гамильтона — Якоби имеет вид  [c.155]

Так 1м образом, мы показали, что если известеи полный интеграл уравнения Гамильтона — Якоби, то нет необходимости интегрировать систему обыкновенных дифференциальных уравнений (6.1), т. е. задача интегрирования системы (6.1) заменяется задачей нахождения полного интеграла у1)авнения (6.12).  [c.156]

Переменные V),, г = 1,..., т называются сопряженны.ми переменными, а определяющая их система дифференциальных уравнений — сопряженной системой. Функция 1-1 называется функцией Гамильтона или гамильтонианом задачи управления. Сопряженная система совместно с системой дифференциальных уравнений для переменных л.-,, г = образуют гамильтонову систему дифференци-  [c.609]

Замечание 8.12.1. Использование принципа Гамильтона приводит к необходимости решать краевую задачу, то есть задачу о поиске решения системы дифференциальных уравнений движения, удовлетворяющего заданным краевым условиям q(системы дифференциальных уравнений определяется по начальным условиям q(to), Задача Коши в силу принципа  [c.613]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]


О линейных гамильтоновых системах дифференциальных уравнений. Пусть в системе (1) функция Гамильтона не зависит от времени и система допускает решение, для которого величпньс Qi, Pi (г—1, 2,. .., п) постоянны. Это решение отвечает положеппю равновесия механической системы, имеющей уравнения движения (1). Так как перепое начала координат является каноническим  [c.316]

Предстапление функции Гамильтона в виде (53) можно эффективно использовать для приближенного интегрирования канонических дифференциальных уравнений движения. Для этого пренебрежем в (53) членами Я, которые имеют более высокую степень относительно Ph, не кели функция И. Тогда Н — П. Замечательно, что система канонических уравнений с функцией Гамильтона /7 = Я (g pi,. . ., (7 р ) сразу интегрируется. Действительно положим Tk = qhPh- Тогда уравнения с функцией Гамильтона и запишутся в виде  [c.323]

Общие замечания. Пусть дифференциальные уравнения возмущенного движения занпсываются и виде системы уравнений Гамильтона  [c.391]


Смотреть страницы где упоминается термин Гамильтона дифференциальное : [c.212]    [c.314]    [c.337]    [c.626]    [c.16]    [c.296]    [c.311]    [c.341]    [c.401]    [c.404]   
Механика (2001) -- [ c.0 ]



ПОИСК



Гамильтон

Гамильтона дифференциальное уравнение в частных производных

Гамильтона дифференциальные уравнени

Гамильтонова форма дифференциальных уравнений движении

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ В ЧАСТНЫХ ПРОИЗВОДНЫХ ГАМИЛЬТОНА—ЯКОБИ Важная роль производящей функции в задаче о движении

Двадцатая лекция. Доказательство того, что интегральные уравнения, выведенные из полного решения Гамильтонова уравнения в частных производных, действительно удовлетворяют системе обыкновенных дифференциальных уравнений, уравнение Гамильтона для случаи свободного движения

Дифференциальное уравнение Гамильтона — Якоби

Дифференциальное уравнение Якоби-Гамильтона для главной функции в частных производных

Зэк гамильтоново

Интегрирование дифференциального уравнения Гамильтона — Якоби разделением переменных. Теорема Штеккеля

Классическая теория возмущений . 183. О линейных гамильтоновых системах дифференциальных уравнений

О линейных гамильтоновых системах дифференциальных уравнений

Обобщённые импульсы. Союзное выражение кинетической энерТеоремы Донкина. Уравнения Гамильтона. Канонические уравнеОтдел III ОБЩИЕ ПРИНЦИПЫ МЕХАНИКИ XXXIV. Дифференциальные принципы

Обыкновенные дифференциальные уравнения Гамильтона

Оператор Гамильтона дифференциальный

Получение дифференциальных уравнений Лагранжа второго рода из принципа М. В. Остроградского и канонических уравнений из принципа Гамильтона — Остроградского

Принцип Гамильтона-Остроградского дифференциальный

Роль дифференциального уравнения в частных произвол ных в теориях Гамильтона и Якоби

Теорема Якоби об интегрировании дифференциального уравнения Гамильтона в частных производных

ЧАСТЬ Ш ГАМИЛЬТОНОВА МЕХАНИКА Дифференциальные формы



© 2025 Mash-xxl.info Реклама на сайте