Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Якоби связи

Движение точки, притягиваемой двумя неподвижными центрами, обратно пропорционально квадрату расстояния. Задача движения точки, притягиваемой двумя неподвижными центрами с силой обратно пропорциональной квадрату расстояния, была впервые приведена к квадратурам Эйлером для случая плоского движения. Лагранж дал общее решение, которое Якоби связал с методами интегрирования, излагаемыми в этой главе.  [c.493]


Полученное решение весьма примечательно. Оно имеет в точности такую же форму, какая получается при решении задачи с помош ью теоремы Гамильтона — Якоби. Связь между двумя этими способами решения обусловлена тем, что К (gi, qz, h, а) есть полный интеграл модифицированного уравнения в частных производных (16.5.6).  [c.455]

В свое время мы уже определили с помощью теоремы Гамильтона — Якоби связь эллиптических элементов с величинами аир. Она выражается следующими формулами (см. (18.13.16))  [c.510]

Т.-ф. Якоби связаны между собой ф-лами преобразования  [c.111]

Определяя с помощью подстановки этого выражения в уравнение Гамильтона — Якоби связь между постоянными (число независимых неаддитивных постоянных должно равняться числу независимых переменных), найдем полный интеграл  [c.406]

Метод Ньютона, характеризуемый высокой скоростью сходимости, широко распространен в процедурах автоматизированного проектирования. Однако по сравнению с предыдущими методами реализация метода Ньютона связана с увеличенными затратами памяти, требующимися для размещения матрицы Якоби. Кроме того, увеличивается трудоемкость вычислений на одной итерации.  [c.228]

Обратим теперь внимание на следующее обстоятельство. В координатном пространстве в каждый момент нас интересует положение лишь одной движущейся в нем точки—она определяется мгновенными значениями обобщенных координат рассматриваемой системы. Между тем полный интеграл уравнения Гамильтона — Якоби в каждый момент определяет функцию S, заданную во всем координатном пространстве и имеющую вполне определенное значение в каждой точке этого пространства. В связи с тем, что функция S зависит также и от времени, можно представить себе ее как некоторую поверхность, заданную в координатном пространстве и непрерывно деформирующуюся (или движущуюся). Каким же образом задание функции, определенной на всем пространстве и изменяющейся во времени, может определить движение той единственной точки, которая интересует нас Как связано движение этой точки с деформирующейся поверхностью  [c.324]

Сложнее гарантировать единственность решения, хотя это так же важно, как и доказательство его существования. Наиболее надежные выводы получаются при известной форме поверхности минимизируемой функции в многомерном пространстве. Проблема эта тесно связана с анализом устойчивости равновесия и частично уже обсуждалась в 12, 13. Выше встречались различные формулировки условий устойчивости говорилось о существовании взаимно однозначного соответствия между термодинамическими силами и координатами, о постоянстве знака якобиана их преобразования (9.23), о положительной определенности квадратичных форм (12.32), (12.47), о знаке определителей матриц вторых производных характеристических функций (9.24), (12.20). Еще одно эквивалентное выражение условий устойчивости связано непосредственно с характеристикой формы поверхности рассматриваемой функции — это ее выпуклость.  [c.185]


Материальная точка т вынуждена двигаться вдоль прямой, вращающейся с постоянной угловой скоростью. Реакция связи, перпендикулярная этой прямой, не равна нулю и совершает работу на абсолютном перемещении точки. Механическая энергия системы в этом случае не сохраняется, хотя сила пружины, действующая на точку, потенциальна. Вместе с тем имеет место обобщенный интеграл энергии Якоби.  [c.546]

Показать, что если связи склерономны, то обобщенный интеграл энергии Якоби переходит в интеграл энергии, соответствующий теореме Г). 1.8.  [c.622]

Установленная связь между траекториями механической системы и уравнением в частных производных позволяет не только находить траекторию по решению уравнения Гамильтона-Якоби, но и, наоборот, свести интегрирование уравнения в частных производных указанного типа к интегрированию системы обыкновенных дифферен-циа,тьных уравнений Гамильтона.  [c.648]

М. В. Остроградский распространил методы аналитической механики на теорию соударений твердых тел, применив развитую мм теорию движения систем с нестационарными связями. М. В. Остроградскому принадлежит открытие, независимо от К. Якоби, особого метода интегрирования уравнений динамики. Наконец, еще раз напомним, что М. В. Остроградский независимо  [c.37]

Вместо главной функции Гамильтона введем характеристическую функцию Якоби. Характеристическая функция связана с главной функцией некоторым соотношением. Это соотношение совпадает с соотношением между механическим действием согласно Гамильтону и Остроградскому и механическим действием согласно Эйлеру и Лагранжу. Рассмотрим снова функцию  [c.372]

Дальнейшие попытки интегрирования системы уравнений (III. 12) и (III. 14) были связаны с теоремой Якоби о последнем  [c.448]

С. В. Ковалевская ввела новые переменные 1 и 52, посредством которых определила все шесть неизвестных функций (0 , уь Уз- В соответствии с теорией Якоби было найдено, что связь между 5) и 2 определяется дифференциальным уравнением первого порядка с разделенными переменными  [c.454]

Пример. Если связи не зависят явно от времени, функция Н также не будет зависеть явно от f и уравнение Гамильтона — Якоби  [c.220]

Пусть конечные положения системы Ро и P заданы наперед. Для действительной траектории при рассматриваемых силах п связях имеет место принцип Якоби  [c.228]

В заключение отметим, что применение термодинамики к решению различных физических задач сильно облегчается использованием свойств якобианов (определителей Якоби). Это связано с тем, что обычные частные производные, а они входят во многие термодинамические соотношения, представляются в виде якобианов.  [c.111]

В связи с применением различных независимых переменных возникает необходимость преобразования производных термодинамических величин от одних переменных к другим, например, от х, у к ц. Для этого удобнее всего воспользоваться детерминантами Якоби (якобианами), обозначаемыми в случае двух переменных через  [c.119]

На рис. 6.8 показаны значения температур и давлений в перегретой жидкости и паре в некоторый произвольный момент роста пузырька в условиях одновременного влияния энергетических и инерционных эффектов. Вдали от пузырька ( на бесконечности ) жидкость существенно перегрета по отношению к температуре насыш,е-ния при актуальном давлении жидкости р . Однако в условиях больших чисел Якоба этот перегрев оо Т (роо), используемый как параметр в энергетической схеме роста, выступает лишь как предельная расчетная величина, не достигаемая при экспериментальном исследовании процесса. Действительный перегрев ДГ, = Гоо - Т", который следует теперь использовать в граничных условиях для уравнения энергии (6.25), всегда меньше А.Т . Температура Т" и давление р" в пузырьке связаны как параметры на линии насыщения (кривая 1 на рис. 6.8). Эти параметры, в отличие от тех, что принимаются в предельных схемах роста, непрерывно изменяются (уменьшаются) по мере увеличения объема пузырька. Давление пара р" всегда меньше, чем его предельное расчетное значение р (Тао), но на начальной стадии роста пузырька (практически при г < 1 мс для условий Ja > 500) это различие еще не слишком велико, тогда как на этой стадии АГ, АТ . Это означает, что ранняя стадия роста пузырька управляется главным образом динамически-  [c.258]


При построении приближенных моделей необходимо учитывать несколько важных особенностей анализируемой задачи. Прежде всего паровой пузырек на стенке, несмотря на внешнее сходство, вовсе не аналогичен воздушному шару, привязанному за нитку ко дну сосуда с водой (хотя такая аналогия и кажется естественной). По существу у пузырька нет каких-либо механических связей с твердой стенкой, кроме поверхностного натяжения на линии контакта трех фаз. Ясно, что роль поверхностного натяжения совершенно ничтожна в случае крупных пузырьков, характерных для низких приведенных давлений (больше числа Якоба). Кроме того, поверхность пузырька легко изменяет свою форму локальный импульс давления (например, за счет турбулентных пульсаций), воздействующий на участок поверхности пузырька, не передается центру масс пузырька, но может изменить его форму. В экспериментах наблюдали как расположенный в жидкости вблизи стенки термометрический проволочный зонд свободно входит в паровой пузырек, не влияя на его эволюцию (фактически пузырек растет, не замечая малого в сравнении с его размером твердого препятствия). Ясно, что в случае с воздушным шариком ситуация совершенно иная.  [c.273]

Поскольку применение метода Ньютона приводит к значительным затратам машинного времени, особенно с увеличением числа компонентов, что, как отмечалось, связано с вычислением и обращением матрицы Якоби, развиваются методы простой итерации для решения системы (7.45), в которых не требуется вычисления и обращения матрицы Якоби .  [c.209]

В литературе встречаются иные определения пластичности металла и меры ее количественной оценки. Например, многие специалисты считают, что пластичность — это не свойство металла, а его способность (склонность) деформироваться остаточно без макроразрушения и связано это, якобы, с тем, что в зависимости от условий деформирования, в частности от схемы напряженного состояния, один и тот же металл может быть способен (склонен) к пластической деформации или вообще не обладать такой способностью.  [c.487]

Пример, в котором связи зависят от времени. Применим метод Якоби к задаче, изложенной в п. 455.  [c.372]

Вычисление действия вдоль траектории. Согласно теореме Якоби, примененной к рассматриваемому случаю (когда связи не зависят от времени и существует силовая функция), для нахождения траекторий  [c.392]

Формулировка принципа. — Принцип наименьшего действия, впервые точно сформулированный Якоби, аналогичен принципу Гамильтона, но менее общ и более труден для доказательства. Этот принцип применим только к тому случаю, когда связи и силовая функция не зависят от времени и когда, следовательно, существует интеграл живой силы.  [c.225]

Принцип Якоби показывает, что если связи и силовая функция не зависят от времени, то и определение траектории выполняется независимо от времени. Это свойство, не представляющееся очевидным в уравнениях Лагранжа, обнаруживается при первом взгляде, когда уравнения написаны в канонической форме. Из канонических уравнений видно также, что если траектория известна, то t определяется квадратурой (п° 450),  [c.324]

Книга представляет собой углубленный курс классической механики, написанный на современном уровне. Помимо краткого обзора элементарных принципов, в ней изложены вариационные принципы механики, задача двух тел, движение твердого тела, специальная теория относительности, уравнения Гамильтона, канонические преобразования, метод Гамильтона — Якоби, малые колебания и методы Лагранжа и Гамильтона для непрерывных систем и полей. Показывается связь между классическим развитием механики и его квантовым продолжением. Книга содержит большое число тщательно подобранных примеров и задач.  [c.2]

Таким образом, главная функция Гамильтона осуществляет переход к постоянным координатам р и постоянным импульсам а. Решая уравнение Гамильтона — Якоби, мы в то же время получаем решение рассматриваемой механической задачи. Говоря на математическом языке, мы установили соответствие между 2п каноническими уравнениями движения, которые являются обыкновенными дифференциальными уравнениями первого порядка, и уравнением Гамильтона — Якоби, которое является уравнением первого порядка в частных производных. Такое соответствие имеет место не только для уравнений Гамильтона известно, что каждому уравнению первого порядка в частных производных соответствует определенная система обыкновенных дифференциальных уравнений первого порядка. В данном случае эта связь между рассматриваемым уравнением в частных производных и соответствующими каноническими уравнениями может быть объяснена происхождением этих уравнений от общего вариационного принципа — модифицированного принципа Гамильтона.  [c.304]

Зависимость функции W от старых координат qi определяется уравнением (9.20), которое является дифференциальным уравнением в частных производных и подобно уравнению Гамильтона — Якоби (9.3). Полный интеграл его опять будет содержать п независимых постоянных, одна из которых опять будет аддитивной. Остальные постоянные 2,. .., п могут вместе с 1 быть приняты за новые постоянные импульсы. Полагая в первой половине уравнений (9.21) / = О, мы можем связать п постоянных а с начальными значениями Qi и р,-. Наконец, разрешая равенства (9.22Ь) относительно qu мы можем получить их как функции at, Pi и t, чем и заканчивается решение задачи. Следует заметить, что при i ф 1 уравнения (9.22Ь) не содержат времени. Поэтому они позволяют выразить все координаты qi  [c.309]


Хотя это может показаться странным, но новая волновая механика также связана с теорией Гамильтона — Якоби. Подобно тому как зародышем матричной механики являются классические скобки Пуассона, зародыш волновой механики можно увидеть в связи метода Гамильтона — Якоби с геометрической оптикой. К рассмотрению этой связи мы сейчас и перейдем.  [c.336]

Метод Гамильтона — Якоби и переменные действие — угол изложены в этой книге значительно менее подробно, чем в книге Борна. (Вероятно, поэтому рассматриваемые вопросы часто оказываются более легкими для чтения.) Особо следует отметить изложение вопроса о связи вырождающихся движений с разделением переменных. В приложении к этой книге производится вычисление интегралов из задачи Кеплера с помощью теории вычетов (что, впрочем, делается и в книге Борна),  [c.345]

Для формирования матрицы Якоби используем экономичную процедуру. Элементы R , и шз дадут вклады в элемент уц, равные соответственно l/ з и niilAt, где Д/ — шаг интегрирования. Элемент La даст вклад Д///-2 в элементы уц и (/22 со знаком + , в элементы уц и yzi —со знаком — н т. д. Элементы уц и (/,ц нулевые, так как нет связи между узлами I а 3. Элементы вектора невязок сформированы из усилий, приложенных к узлу. Надексом обозначены переменные, полученные на предыдущем  [c.134]

Дальнейшее развитие аналитической механики связано с трудами творца Небесной механики Лапласа, Фурье, Гаусса, Пуассона, К. Якоби, Гамильтона, Остроградского, Кирхгофа, Гельмгольца, лорда Кельвина, Герца, Ковалевской, Ляпунова. Чаплыгина и многих других выдаЕОщихся ученых.  [c.14]

Следствие 8.12.3. (Принцип Якоби). Пусть система с го-лономными связями находится под действием потенциальных в обычном смысле) сил, а связи не зависят явно от времени. Тогда функцгюнал принципа Мопертюи-Лагранжа-Якоби представляется в форме  [c.619]

В принципе Якоби время t и дуга 8 связаны дифференциальным ode  [c.619]

Выдающиеся результаты в области общих принципов механики получили М. В. Остроградский, В. Гамильтон, К. Гаусс и Г. Герц. Теория интегрирования уравнений динамики была разработана В. Гамильтоном, М. В. Остроградским и К. Якоби, добившихся независимо друг от друга фундаментальных результатов в этой части механики. В общей теории движения систем материальных точек глубокие исследования провел С. А. Чаплыгин. С. А. Чаплыгину принадлежит особая система дифференциальных уравнений движения систем с неголономными связями. Теория движения систем с неголопомнымн связями является одним из сравнительно новых разделов теоретической механики. Эта теория непосредственно связана с современными исследованиями свойств так называемых неголопомиых пространств, обобщающих в известном смысле пространства Лобачевского и Ри.мапа.  [c.38]

Пример (К. Якоби). Пусть рассматривается движение системы со стационарными голономнымн связями в консервативном силовом поле. Тогда существует интеграл энергии  [c.368]

Очерком общих методов интегрирования уравнений динамики заканчивается вторая часть этой книги, содержащая, вместе с ГЛ. I первой части, краткое рассмотрение основ аналитической механики. Оставлен в стороне ряд вопросов, как, например, распространение метода Остроградского — Гамильтона — Якоби на системы с избыточными координатами ) на случай неголоном-ных систем ), колебания с малыми и конечными амплитудами систем при наличии неголономиых связей и т. д.  [c.396]


Смотреть страницы где упоминается термин Якоби связи : [c.505]    [c.123]    [c.174]    [c.546]    [c.619]    [c.672]    [c.707]    [c.229]    [c.8]    [c.325]    [c.346]   
Теоретическая механика (1999) -- [ c.296 ]



ПОИСК



Теорема Гамильтона—Якоби связями

Якоби

Якоби Якоби



© 2025 Mash-xxl.info Реклама на сайте