Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сопротивление Влияние химического состава

Влияние химического состава материала. При испытании сталей с примесями углерода, магния, никеля, хрома, ванадия, меди, бора и фосфора замечено, что каждый из них повышает сопротивление усталости в такой же пропорции, в какой они повышают предел прочности материала.  [c.353]

Цель настоящей работы — исследовать влияние химического состава и полировки поверхности кардной проволоки на ее сопротивление механической и коррозионной усталости (выносливости).  [c.215]


Влияние химического состава карбидной фазы отмечается главным образом только при испытании стали на износ чем больше твердость легированных карбидов, тем выше сопротивление стали износу.  [c.280]

Относительная чувствительность различных высокопрочных сталей к коррозионному растрескиванию полностью подтверждена [4, 6, 42, 43], однако причины изменения сопротивления коррозионному растрескиванию не полностью изучены. Поэтому необходимы дальнейшие исследования механизма водородного охрупчивания стали, влияния химического состава и термической обработки на скорость распространения трещины при коррозионном растрескивании, а  [c.271]

ВЛИЯНИЕ ТИПА КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ, ХИМИЧЕСКОГО СОСТАВА И СТРУКТУРЫ НА СОПРОТИВЛЕНИЕ ДЕФОРМАЦИИ  [c.462]

ВЛИЯНИЕ ТИПА КРИСТАЛЛИЧЕСКОЙ РЕШЕТКИ И ХИМИЧЕСКОГО СОСТАВА НА СОПРОТИВЛЕНИЕ ДЕФОРМАЦИИ. Различие кривых Gs—0, Os—е, Gs—е для разных металлов обусловлено типом решетки, а также взаимосвязанной с типом кристаллической решетки величиной энергии дефекта упаковки д.у.  [c.471]

Окружающая среда может вызывать 1) растворение поверхностных слоев деформируемого тела 2) коррозию этих слоев 3) изменение химического состава поверхности 4) адсорбционное облегчение деформации. Эти факторы оказывают существенное влияние на пластичность металла и его сопротивление деформированию.  [c.477]

Изменение химического состава поверхности деформируемого тела в целом может привести к существенному изменению сопротивления деформации. Особенно это ярко выражено у циркония, ниобия, ванадия, тантала, на структуру и свойства которых оказывают влияние примеси внедрения углерод, азот и др. Твердость и предел прочности ниобия, например, возрастают после прокатки при 1200 °С с обжатием 50% на 25% при деформации на воздухе по сравнению с деформацией в вакууме 6,67-10 МПа. При этом пластичность уменьшается примерно в шесть раз.  [c.480]

После реализации полного эксперимента было получено уравнение регрессии, связывающее коэффициент относительного разупрочнения при 500° С с химическим составом стали а=0,519—-— 0,047% Сг+0,032% №—0,117% Мо. Повышение содержания хрома, и в особенности молибдена, положительно сказывается на сопротивлении стали ползучести при 500° С- Влияние этих элемен-  [c.112]

Старение полимерных материалов. Физико-химические свойства полимеров (предел прочности при растяжении, сопротивление пластической деформации, температура размягчения, эластичность и др.) определяются их химическим составом и структурой. Структура полимеров характеризуется областями кристаллического и аморфного строения, формой и степень подвижности цепей, величиной и характером сил, действующих между цепями, степенью сшивания цепей (образования поперечных связей). Поперечные связи ограничивают движение цепей относительно друг друга и оказывают большое влияние на физические свойства полимеров. С ростом числа поперечных связей уменьшается растворимость полимеров, ухудшаются механические свойства, характерные для линейных полимеров эластичность, вязкость и др. Свойства сшитых полимеров аналогичны свойствам полимеров с трехмерной структурой.  [c.17]


В заключение необходимо отметить, что увеличение временного сопротивления углеродистых, низколегированных и высокопрочных нержавеющих сталей до 1600—2000 МПа вследствие изменения их химического состава или термообработки приводит к повышению предела выносливости образцов до 700—800 МПа и не оказывает заметного влияния на условный предел коррозионной выносливости. Последний при Л/=5 10 цикл на-  [c.65]

В качестве жидких коррозионных сред при исследовании коррозионной усталости металлов наиболее часто применяют дистиллированную, водопроводную и морскую воду, а также водные растворы хлоридов натрия, магния и других солей, реже — растворов кислот. Доминирующее использование этих сред связано с их наиболее широким распространением в эксплуатационных условиях. По приближенным оценкам 90—95 % случаев коррозионно-усталостного разрушения металлических конструкций связано с воздействием именно этих жидких коррозионных сред. Они существенно различаются по химическому составу, величине водородного показателя pH, количеству растворенного кислорода и поэтому оказывают различное влияние на сопротивление коррозионно-усталостному разрушению.  [c.105]

Влияние механизма первоначальной обработки сказывается и на электросопротивлении поверхностного слоя графита. Так, штабики из графита размером 0,6 X 0,6 X 5 мм, вырезанные из одного и того же куска, имели следующие величины электрического сопротивления 1 — расчетное — 0,4 Ом 2 — электроэрозионная резка — 9,5 Ом 3 — механическая обработка — 1,2 Ом 4 — отжиг в среде фтора — 0,5 Ом. Такие изменения в величине электросопротивления связаны со значительным нарушением поверхностной структуры и изменением ее химического состава, особенно в процессе электроэрозионной резки.  [c.183]

При этом кривые R — f[o) и e=f(S) коррелируют как по завершении процесса отверждения (кривые 1, Г 2,2 ), так и после длительной релаксации (3,3 ). Следует отметить, что закономерности изменения термического сопротивления R в зависимости от толщины прослойки оказались общими для соединений с прослойкой на основе ПН-1 и КЛН-1. Это свидетельствует о том, что независимо от химического состава связующего вещества основное влияние на свойства прослоек и механизм их формирования оказывают структурные превращения, обусловленные степенью взаимодействия структурных элементов между собой и на границе прослойка — субстрат.  [c.67]

Характер изменения термического сопротивления в зависимости от условий формирования и толщины клеевых прослоек оказался общим для различных по химическому составу клеев. Это свидетельствует о том, что определяющее влияние на механизм формирования термического сопротивления оказывает не химический состав клеевой композиции, а структурные превращения в объеме прослойки и особенно на границе раздела прослойка— субстрат, проявляющиеся в форме плоскостной ориентации структурных элементов. Справедливость  [c.69]

Наконец, следует отметить, что на хрупкость материала могут очень сильно влиять так называемые остаточные напряжения, которые могут получиться в материале при закалке, при холодной прокатке или при недостаточной температуре горячей прокатки, когда материал получает наклеп. Опытами на растяжение такие напряжения, как правило, не могут быть выявлены. Остаточные напряжения обычно связаны с возникновением объемного напряженного состояния в материале в связи с этим возможно хрупкое разрушение. Такие случаи встречались при изготовлении мощных двутавровых балок со сравнительно тонкими полками. В нашей практике был случай хрупкого разрушения двутавровой балки № 50 при сбрасывании ее на землю в морозный день. Результаты статических испытаний, химического и металлографического анализа показали, что материал как будто вполне доброкачественный. Лишь ударные испытания при различных температурах обнаружили резкую хладноломкость для образцов, вырезанных у края полки двутавра,— в наиболее наклепанном месте. Что касается влияния на хрупкость химического состава сталей, то ударная вязкость понижается, как это видно из таблицы 21, с увеличением количества углерода, т. е. с повышением предела прочности и уменьшением пластических свойств стали. Весьма неблагоприятно отражается на сопротивлении удару, особенно при низких температурах, наличие фосфора. Поэтому на практике при изготовлении материала для деталей, работающих на удар, всячески ограничивают примесь этого элемента.  [c.533]


Необходимо подчеркнуть, что универсального рецепта, пригодного для всех случаев, нет и быть не может. Эффективность того или иного химического состава глазури, стойкой против цека на одном и том же черепке, зависит от суммарного влияния всех факторов сопротивления растяжению, модуля упругости и коэффициента термического расширения глазури.  [c.133]

Так же как и при прокатке, относительное обжатие и вытяжка взаимосвязаны отношением Я=1/(1—е). Основным коэффициентом деформации считают относительное обжатие, по которому оценивают эффективность процесса. При волочении проволоки суммарное относительное обжатие за один передел может достигать 90 % и более. Наибольшее частное относительное обжатие, как уже говорилось выше, ограничивается уровнем напряжения растяжения в сечении переднего конца заготовки, к которому приложено усилие волочения. Усилие волочения зависит от большого числа факторов от сопротивления металла деформации, которое в свою очередь зависит от химического состава стали и состояния металла (температура, наклеп). Чем больше степень частного относительного обжатия, тем больше усилие волочения. Усилие волочения возрастает при увеличении коэффициента трения по площади контакта металла и инструмента. Сложное влияние на усилие волочения оказывает форма продольного профиля конусного отверстия, через которое протягивается металл.  [c.336]

Стойкость против окисления и горячей коррозии зависит главным образом от химического состава сплава, а не от способа кристаллизации. У сплавов направленной кристаллизации межзеренное окисление сильно подавлено или устранено, однако при тех высоких температурах, которые являются рабочими для суперсплавов направленной кристаллизации, межзеренное окисление не представляет собой главной проблемы. Улучшений в сопротивлении окислению достигают вне зависимости от способа кристаллизации сплавов. О сколь-нибудь существенном влиянии кристаллографической ориентировки на скорость окисления или горячей коррозии не сообщают.  [c.276]

Сталью называют сплав железа с углеродом (до 2 %) и другими элементами. Большое влияние на обрабатываемость стали оказывает ее химический состав. С увеличением содержания углерода повышается механическая прочность стали и, как следствие, возрастает ее сопротивление резанию, но увеличивается шероховатость поверхности. При обработке стали с малым содержанием углерода (0,1. ..0,25 %) достигается лучшая шероховатость поверхности. По химическому составу стали подразделяют на углеродистые и легированные.  [c.30]

Теплопроводность твердой фазы зависит главным образом от структуры этого каркаса и содержания в нем оксидов железа. Увеличение доли оксидов железа, сопровождающееся увеличением плотности слоя, приводит к уменьшению его теплового сопротивления и увеличению теплопроводности. Противоположное влияние на тепловое сопротивление и теплопроводность оказывает увеличение числа газовых прослоек и микрополостей между частицами. Радиационный перенос энергии в слое загрязнений зависит от размеров и формы газовых зазоров и микрополостей и, так же как и перенос теплоты теплопроводностью, в основном определяется структурой слоя. Помимо указанных факторов, дополнительное тепловое сопротивление, обусловленное снижением теплопроводности, связано также с рассмотренным выше прерывистым изменением химического состава и других свойств отложений по глубине слоя.  [c.171]

Наряду с тепловым сопротивлением загрязнений / зл важным фактором, оказывающим большое влияние на условия теплообмена в топках, как уже отмечалось выше, является степень черноты (поглощательная способность) поверхности загрязнений ёзл. Она зависит от химического состава веществ, образующих слой, структуры слоя и микрошероховатости поверхности. Интегральная степень черноты слоя изменяется также в зависимости от его температуры.  [c.174]

Высокое сопротивление коррозии в условиях атмосферы депо обнаружила медистая сталь с несколько повышенным содержанием углерода (С — 0,2% Si—0,19% Си — 0,16%). Способ выплавки сталей (мартеновский, бессемеровский, томасовский) при одинаковом химическом составе не оказывал решающего влияния на противокоррозионную стойкость сплавов.  [c.265]

Структура стали оказывает более существенное влияние на склонность к сероводородному растрескиванию, чем химический состав. Низколегированные стали в этом отношении обычно не отличаются от углеродистых. Склонность стали к растрескиванию в сероводородных средах обусловлена в значительной мере присутствием мартенсита в структуре [43]. Отрицательное влияние мартенсита проявляется особенно заметно, когда он располагается в виде сплошной сетки. Исследования [44] стойкости к сероводородному растрескиванию сталей с тремя основными видами структур ферритной с мелкими карбидами, мартенситной и феррито-перлит-ной — также показали нестойкость мартенситной структуры. Наибольшие время до растрескивания и внутреннее напряжение, при котором происходило растрескивание, отмечались в случае ферритной структуры. Сопротивление растрескиванию сталей с мартенситной структурой совершенно не зависело от их химического состава.  [c.50]

О влиянии химического состава грунта на коррозию существуют разноречивые указания, однако совершенно очевидно, что степень коррозионной акти1зности грунта зависит от характера и количества водорастворимой части грунта. Повышение ее количества связано с уменьшением омического сопротивления среды и, следовательно, способствует усилению коррозионного процесса. На рис, 139 показано изменение электросопротивления грунта по мере повышения концентрации хлористого натрия в растворе. Нерастворимая часть грунта в процессе коррозии непосредственно не участвует.  [c.185]


Общее представление о влиянии химического состава или со держания легирующих элементов на характеристики сопротив ления термической усталости ау тенитных сталей можно полу чить при сравнении расчетных коэффициентов степенных урав нений долговечности. Для сталей аустенитного класса сохраняется общая закономерность зависимости сопротивления термической усталости от соотношения прочностных и пластических свойств при кратковременном разрыве. Приведем некоторые примеры.  [c.143]

Me. Adam D J.. Влияние химического состава, термической и холодной обработки на сопротивление усталости при коррозии . 1 часть. ASST, П, 1927.  [c.278]

Таким образом, для конструкционных стале , применяемых, напри.мер, для стволов артиллери11ских оруди11, влияние химического состава на сопротивление эрозионному разрушению практически незначительно.  [c.135]

Проблема разработки износостойкого материала для конкретных условий абразивного изнашивания является чрезвычайно сложной и поэтому даже при целепаправлеппых работах по ее изучению до настоящего времени не получила своего полного решения. С одной стороны еще недостаточно пакоплепо фактического экспериментального материала о влиянии структурного состояния, количества карбидной фазы металла на его способность к сопротивлению абразивному разрушению, а с другой почти все исследования влияния химического состава сталей и сплавов па их износостойкость проводились для конкретных частных условий, поставленных перед каждым исследователем, как правило, не охватывают проблему в целом.  [c.60]

Эффективность использования банков данных при априорной незаполненности их всеми характеристиками будет определяться совершенством создаваемых одновременно банков знаний по закономерностям сопротивления дес рмированию и разрушению, включающих закономерности длительного статического разрушения, высокочастотной и малоцикловой усталости, распространения трещин, циклического де рмирования, а также влияния химического состава и уровня механических свойств в условиях однократного растяжения на закономерности деформирования и разрушения.  [c.538]

Было установлено, что основной металл разрушенной трубы по химическому составу соответствовал техническим условиям, однако имел пониженную ударную вязкость (при 0°С — 4,05 кгм/см , а при минус 40°С — 3,3 кгм/см , тогда как техническими условиями регламентируются значения не менее 8 и 3,5 кгм/см соответственно). Металл продольных заводских швов по химическому составу также соответствовал требованиям технических условий, а по механическим свойствам (особенно металл ремонтных швов) имел недопустимо высокое временное сопротивление разрыву (до 750 МПа при максимально допустимых по техническим условиям 690 МПа) и низкую пластичность (относительное удлинение для ремонтных швов составляло 2,9% при минимально допустимых 18%, а ударная вязкость при температурах 0 и минус 40°С — 1,45 и 0,69 кгм/см соответственно. В заводских продольных швах имелось много микропор и мелких шлаковых включений, являющихся источниками зарождения микротрещин, величина которых, однако, соответствовала техническим условиям. Металл поперечного монтажного шва содержал хрома на 0,18% больше верхнего допустимого предела и имел неудовлетворительные характеристики пластичности (ударная вязкость при температуре 0°С — 4,96 кгм/см а при минус 40 С — 1,36 кгм/см ). В связи с повышенной чувствительностью стали 14Г2САФ к перегреву в заводских продольных ремонтных швах и поперечных автоматических монтажных швах присутствовали участки металла с крупными ферритными зернами, а в зоне термического влияния — участки с мартенситной структурой. Эти участки металла имели низкую стойкость к коррозионному растрескиванию.  [c.59]

Таким образом, необходимо учитывать совместное влияние химического и фазового составов на пластичность и сопротивление деформации. Например, для сплавов системы Fe—Сг при 900 °С кривые зависимости прочности от химического и фазового состава характеризуются наличием двух максимумов первый из них (- 10% Сг) отвечает максимальному легированию аус-тенита хромом (рис. 268), а второй — стехиометрическо-му составу 0-фазы (45% Сг) в железохромистых сплавах. Двухфазный аустенито-ферритный сплав (12,5% Сг) по прочностным свойствам занимает промежуточное  [c.498]

В связи с тем, что как в состав сталей, так и в состав чугуна, кроме железа и углерода (и неизбежных примесей — Si, S, Р), могут входить и другие, специально добавленные, легирующие элементы, число всевозможных сталей и чугунов с различным химическим составом и различными свойствами огромно. Стали с содержанием легирующих элементов в количестве 3—5%, 5—10% и> 10% называются соответственно низко-, средне- и высоколегированными. Влияние важнейших легирующих элементов таково N1 повышает пластичность и вязкость, уменьшает склонность к росту зерна и к отпускной хрупкости (хрупкость после отпуска), при большом процентном содержании создает свойство пемагнитности Мп увеличивает прокали-ваемость, т. е. снижает критическую скорость закалки, что позволяет применять мягкие режимы закалки, в меньшей степени вызывающие начальные напряжения увеличивает износостойкость Сг упрочняег сталь, после цементации позволяет получать высокую твердость как недостаток отметим повышение отпускной хрупкости W увеличивает твердость, уменьшает склонность к росту зерна Мо повышает прочность, пластичность, а следовательно и вязкость, создает высокое сопротивление ползучести, уменьшает склонность к отпускной хрупкости  [c.319]

Исследования коррозионной усталости металлов проводят с использованием образцов различных геометрических форм, а во многих случаях— моделей или реальных деталей или узлов машин и i аппаратов. Для получения сравнительной оценки влйяния структуры, химического состава металла, агрессивности среды,окружающей температуры, параметров циклического нагружения и других факторов используют обычно образцы диаметром или толщиной 5—12 мм. Влияние масштабного и геометрического факторов изучают на нестандартных образцах диам- тром или толщиной поперечного сечения от 0,1 до 200 мм и более — гладких цилиндрических, призматических, плоских с различным отношением сечения к длине рабочей части, а также с концентраторами напряжений в виде выточек, отверстий, уступов и пр. Оценку влияния прессовых, шпоночных, резьбовых, сварных, клеевых и тому подобных соединений металлов на их сопротивление усталости проводят на моделях таких соединений уменьшенных размеров, реже — на натурных соединениях (элементы судовых ва-лопроводов, бурильной колонны, сосудов высокого давления, лопатки турбин, колеса насосов и вентиляторов, стальные канаты, цепи, глубиннонасосные штанги и др.).  [c.22]

Татига [6] анализировал химические факторы, влияющие на сопротивление выдавливанию у сплавов на никелевой основе. Из элементов, входящих в состав сплавов, наиболее мощное упрочняющее влияние оказывал ниобий, слабее — вольфрам и еще слабее — молибден. Упрочняющее влияние хрома было незначительным, а из остальных элементов большинство разупрочняли сплав. Поведение всех элементов коррелировало с константами диффузии в никеле при 1150 °С, и на этом основании сделан теоретический прогноз в отношении тантала, как самого мощного из возможных упрочните-лей. Результатом исследований явилось регрессионное уравнение, позволяющее прогнозировать усилие выдавливания для сплавов с новым химическим составом.  [c.211]

Предлагаемая книга посвящена проблеме термической усталосте, т.е процессу появления поверхностных трещин и их постеленного развития вплоть до полного разрушения изделий, работающих в условиях циклических нагревов и охлаждений, сопровождающихся созданием больших градиентов температур по сечению детали. На основе обобщения литературных сведений, данных эксплуатации разнообразногб технологического и энергетического оборудования в ПНР, а также используя собственные производственные и лабораторные исследования, автор сделал попытку установить общие закономерности влияния многочисленных факторов (условий службы, химического состава, структуры и физико-механических свойств материалов) на српротивлен термической усталости конкретных изделий (стальных форм для литья чугунных труб, инструмента горячей и холодной штамповки, прокатных валков, деталей термического оборудования, роторов турбин и др.). При этом приведены практические рекомендации по выбору материалов, термической, химико-терми-ческой и других видов обработки с целью повышения сопротивления усталости изделий, работающих в условиях циклических термических нагрузок. Дано также описание основных методов исследования структуры и свойств материалов при термической усталости.  [c.6]


В литературе также отмечается, что чувствительность вы-сокоирочных сталей к КР находится в сильной зависимости от ряда металлургических факторов. Повтому наблюдается часто различная склонность к КР сталей, близких по химическому составу. В работе [48] отмечается, что стали, выплавленные открытым способом, являются более хрупкими. Стали, полученные методом вакуумной плавки, труднее разрушаются при всех уровнях прочности. Это связывается со снижением концентрации иримесей, которые оказывают влияние на процесс разрушения, включая слияние микроиор. Считают, что слияние микропор является формой микроразрушения. Процесс слияния микропор сопровождается пластическим деформированием отдельных частей зерен (расположенных между порами), разрушением твердых фаз или других фаз примесных элементов. Снижение числа и размера примесных частиц позволяет твеличить О бъем пластически деформированного металла у вершины растущей трещины. Поэтому чистота сплава оказывает большое влияние на сопротивление пластическому разрушению.  [c.111]

Углерод оказывает значительно большее влияние на временое сопротивление, чем на предел текучести, поэтому он уменьшает отношение бт/бв. В работе [17] определили зависимость между механическими свойствами, химическим составом и структурой малоуглеродистой стали, а именно  [c.20]

На Орско-Халиловском металлургическом комбинате методом математической статистики (методом теории корреляции) по результатам сдаточных испытаний нормализованных листов стали 17ГС толщиной 2,5 мм массового производства (450 плавок) было изучено влияние пяти элементов химического состава на временное сопротивление [71]. Результаты анализа парных связей получились следующими Ов = 76,21 % С+ 42,55 кГ/жж , г=0,4878 ав= 11,78-% Мп+41,40 г = 0,4557 Ов =  [c.79]

В задание входит (по указанию преподавателя) определение сопротивления коррозионной усталости канатной проволоки или в трех коррозионных средах (дистиллированной воде, 3%-ном Na l и 3%-ной H2SO4) при одной нагрузке, или в одной среде при трех нагрузках, или исследование влияния на сопротивление коррозионной усталости других факторов (температуры, pH, химического состава, суммарного обжатия проволоки и др.). Во всех случаях испытывают по три проволочных образца на каждое определение.  [c.139]

Окисляющая способность среды является первостепенной, так как именно влиянием этого фактора обусловлено появление на поверхности металла окисной пленки. Испытанием образцов в воздушной среде с разрежением в пределах 1,33 10 — 1,33 10 Па было установлено, что длительная прочность стали 08КП уменьшалась и тем значительнее, чем больше глубина вакуума. Приведенные результаты свидетельствуют, что в зависимости от окисляющей способности среды на поверхности металла формируются окисные пленки, способные в различной степени упрочнять металл. Изменение парциального давления кислорода в рабочей среде приводит к образованию на поверхности металла различных по химическому составу и механи- ческим свойствам окисных пленок [17]. В случае плохой адгезии с металлом и низкой пластичности окисные пленки не оказывают влияния на сопротивление ползучести и длительную прочность металлов.  [c.9]


Смотреть страницы где упоминается термин Сопротивление Влияние химического состава : [c.49]    [c.59]    [c.121]    [c.80]    [c.10]    [c.78]    [c.182]    [c.201]    [c.64]    [c.430]   
Термопрочность деталей машин (1975) -- [ c.81 ]



ПОИСК



Влияние Влияние химического состава

Влияние состава

Влияние химического состава



© 2025 Mash-xxl.info Реклама на сайте