Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения относительного движения задачи многих тел

Во многих задачах динамики рассматривается движение материальной точки относительно системы отсчета, движущейся относительно инерциальной системы. Дифференциальные уравнения движения материальной точки относительно таких подвижных, в общем случае неинерциальных, систем отсчета получают из уравнений движения точки относительно инерциальной системы отсчета и кинематической теоремы Кориолиса о сложении ускорений.  [c.249]


Особое преимущество принципа Гамильтона обнаруживается в механике сплошных сред, поскольку этот принцип приводит не только к дифференциальным уравнениям задачи, но также и к краевым условиям, которым должны удовлетворять решения этих дифференциальных уравнений в частных производных. Во многих случаях необходимо вначале искать функцию Лагранжа L (входящую в выражение вариационного принципа) в зависимости от характера задачи. Это имеет место, например, при движении электрона в магнитном поле, когда действующая сила не имеет потенциала У далее — в теории относительности, когда L нельзя выразить с помощью выведенного нами выражения (4.10) для кинетической энергии. Здесь роль кинетической части принципа наименьшего действия играет выражение  [c.277]

В обычно применяемых методах определение движения свободной точки в пространстве под влиянием ускоряющих сил состоит в интегрировании трех обыкновенных дифференциальных уравнений второго порядка, а определение движения системы свободных точек, взаимно притягивающихся или отталкивающихся, — в интегрировании системы подобных уравнений, число которых втрое больше числа притягивающихся или отталкивающихся точек, если только мы предварительно не уменьшим это последнее число на единицу, рассматривая только относительные движения. Таким образом, в солнечной системе, если мы рассматриваем только взаимные притяжения Солнца и десяти известных планет [ ], определение движений последних относительно первого при помощи обычных методов сводится к интегрированию системы тридцати обыкновенных дифференциальных уравнений второго порядка, связывающих координаты и время, или же, при помощи преобразования Лагранжа, — к интегрированию системы шестидесяти обыкновенных дифференциальных уравнений первого порядка, связывающих время и эллиптические элементы. При помощи этих интегрирований тридцать переменных координат или шестьдесят переменных элементов могут быть найдены, как функции времени. В методе, предложенном в данной работе, задача сводится к отысканию и дифференцированию единственной функции, которая удовлетворяет двум уравнениям в частных производных первого порядка и второй степени подобным же образом всякая другая динамическая задача, относящаяся к движениям (как бы многочисленны они не были) любой системы притягивающихся или отталкивающихся точек (даже если мы предполагаем, что эти точки ограничены какими-либо условиями связи, совместными с законом живой силы), сводится к изучению одной центральной функции, форма которой определяет и характеризует свойства движущейся системы и определяется двумя дифференциальными уравнениями в частных производных первого порядка в сочетании с некоторыми простыми соображениями. Таким образом, по крайней мере интегрирование многих уравнений одного класса заменяется интегрированием двух уравнений другого класса, и даже если считать, что этим не достигается никакого практического облегчения, тем не менее можно получить некое интеллектуальное наслаждение от сведения, пожалуй, самого сложного из всех исследований.  [c.176]


Под влиянием каждого отдельного столкновения происходит очень малое отклонение частицы от ее макроскопической траектории. Если мы не хотим входить в детали динамики системы многих частиц, то единственное утверждение, которое можно высказать относительно столкновений, заключается в том, что они весьма многочисленны и чрезвычайно нерегулярны как по своей силе, так и по направлению. Вопреки первому впечатлению, это утверждение ни в коем случае не является ни негативным, ни обескураживающим. Напротив, если мы готовы отказаться от детерминизма в описании прогресса, то это утверждение дает нам необходимую основу для применения закона больших чисел и теории вероятности. Мы не можем считать силу А (t) заданной функцией времени однако можем сделать разумные предположения о влиянии столкновений, усредненном по большому числу макроскопически одинаковых ситуаций (т. е. по ансамблю). Аналогично мы не можем предсказать скорость или положение броуновской частицы в каждый момент времени t, но можем предсказать средний результат большого числа экспериментов, выполненных в одинаковых условиях. Следовательно, весь подход к решению уравнения (11.2.2) отличается от традиционной детерминированной начальной задачи для дифференциального уравнения. Уравнение (11.2.2) является типичным (и знаменитым) представителем класса так называемых стохастических (или случайных) уравнений движения. По имени  [c.11]

В линейной теории вычисления могут быть проведены относительно простыми аналитическими средствами, так как линеаризированные уравнения потока в основном совпадают с уравнениями волнового движения малой амплитуды. Следовательно, многие хорошо известные методы теории волн могут быть применены в такой упрощенной сверхзвуковой аэродинамике это особенно справедливо для случая тонких тел вращения (например, для фюзеляжа самолета, корпуса снаряда и для плоских тел, подобных крылу самолета). В этих случаях может быть сделано дальнейшее упрощение, которое касается граничных условий задачи, а именно, требования плавного обтекания. Это условие определяет, в случае осесимметричного потока, направление вектора скорости на поверхности, а в случае плоского тела — направление составляющей вектора скорости, лежащей в плоскости нормальной к средней поверхности тела. Линеаризированные дифференциальные уравнения при указанных граничных условиях можно решить точно, но, обычно, приходится применять численные и графические методы. Поэтому желательно дальнейшее упрощение задачи, которое достигается с помощью предельного перехода от точных граничных условий к условиям, относящимся к оси тела вращения или к плоскости плана крыла вместо действительной поверхности. Приводимые ниже результаты основаны на этом приближении. Строго говоря, только это приближение согласуется с допущениями линейной теории, потому что если удовлетворить граничным условиям на действительной поверхности, то, в рассмотрение, вообще, войдут члены высшего порядка, которые были отброшены в дифференциальных уравнениях.  [c.13]

Полученные шесть дифференциальных уравнений движения определяют шесть параметров т], ф, т ), в функции времени t. В общем случае правые части этих уравнений зависят от шести параметров и их производных, так что приходится при определе-лии решения системы рассматривать совместно все шесть уравнений движения. В ряде частных случаев обе группы уравнений удается изучать независимо одну от другой, и задача разбивается на две 1) изучение движения центра масс твердого тела 2) изучение движения твердого тела относительно центра масс. Таким образом, например, удается решать многие задачи о движении искусственных спутников Земли.  [c.440]

Во многих случаях полного решения второй задачи не требуется. Достаточным оказывается установление некоторых отдельных свойств движения точки. В таких случаях решение задачи по приведенной выше схеме нецелесообразно. Вместо полного решения здесь может оказаться достаточным знание некоторых первых интегралов движения. В первые интегралы входят еще первые производные по времени от координат, т. е. решение дифференциальных уравнений выполнено не до конца (см. примеры 6.1—6.6). Рассмотрим смысл первых интегралов. Общее решение, выраженное формулами (6.6), и три уравнения (6.9), получающиеся из него в результате дифференцирования по времени, можно рассматривать как систему уравнений относительно шести неизвестных констант Сь Сг,. .., Сб. Предположим, что ее решили. Решения имеют вид  [c.86]


При исследовании малых колебаний около устойчивого равновесного состояния во многих случаях можно (не совершая большой погрешности) сохранять в выражениях, зависящих от координат и скоростей, только члены низшего (относительно этих величин) порядка, отбрасывая все другие как бесконечно малые высших порядков. Такая операция приводит обычно решение задачи о малых колебаниях к интегрированию линейных дифференциальных уравнений с постоянными коэффициентами. Она называется линеаризацией уравнений движения системы. Колебания, описываемые линеаризованными дифференциальными уравнениями, называются линейными колебаниями. Линеаризация уравнений малых колебаний может иногда оказаться результатом некоторых конструктивных изменений в рассматриваемой или проектируемой системе, что до известной степени служит основанием ее допустимости.  [c.69]

Колебательные движения механических систем удобно описывать уравнениями Лагранжа в обобщенных координатах. При составлении уравнений мы будем отсчитывать обобщенные координаты всегда от положения устойчивого равновесия, относительно которого и происходят колебания механических систем. В большинстве случаев эти уравнения нелинейны и их интегрирование связано с большими трудностями. Однако при решении многих технических задач оказывается возможным в этих уравнениях отбрасывать квадраты и более высокие степени координат и скоростей. Такая операция называется линеаризацией уравнений. Линеаризованные уравнения не могут, конечно, в точности отобразить движения системы и дают несколько искаженную картину явления. Искажения тем менее существенны, чем меньше отброшенные члены уравнений в сравнении с оставшимися. Если значения координат и скоростей во все время движения остаются очень малыми, то их квадратами и высшими степенями вполне можно пренебречь, подобно тому, как в дифференциальном исчислении пренебрегают бесконечно малыми высших порядков. Таким образом, мы пришли к заключению, что колебания, описываемые линеаризованными уравнениями при сделанном выборе начала отсчета, должны быть только малыми колебаниями около положения равновесия.  [c.435]

Очевидно, что система (9.50 распадается на п независимых систем, каждая из которых определяет движение одной из точек Mi относительно точки Мо так, как если бы все осталь-ныеточки не существовали. По этой причине в астрономических задачах уравнения (9.5 ) называются дифференциальными уравнениями невозмущенного движения, а точные уравнения относительного движения (7.24) в задаче многих тел-точек называются соответственно дифференциальными уравнениями возмущенного движения.  [c.416]

Примеры параметрически возбуждаемых колебаний в машиностроении. Параметрические колебания часто встречаются в задачах динамики механизмов и машин. Вал, сечение которого имеет неодинаковые главные жесткости при изгибе, может испытывать незатухающие поперечные колебания даже в том случае, когда он полностью уравновешен. Причиной поперечных колебаний является периодическое (при постоянной угловой скорости) изменение изгибных жесткостей относительно неподвижных осей. В неподвижной системе координат поперечные колебания вала описываются дифференциальными уравнениями с периодическими коэффициентами. Если использовать координатную систему, которая вращается вместе с валом, то придем к дифференциальным уравнениям с постоянными коэффициентами. Поэтому в данном примере изгибные колебания можно трактовать и как параметрически возбуждаемые колебания, и как автоколебания. Для вала, который может совершать поперечные колебания только в одной плоскости, причиной поперечных колебаний является периодическое изменение изгибной жесткости вала в этой плоскости. Примером системы с периодически изменяющейся приведенной массой служит шатунно-кривошипный механизм. Параметрическое возбуждение колебаний возможно во многих системах, где движение передается через упруго деформируемые звенья, например, в спарниковой передаче в локомотивах.  [c.116]

Замечание 3. Одна из наиболее известных сильно возмущенных задач, которой занимались многие выдающиеся математики прошлого,— это задача о движении Лупы. Дело в том, что та движение Луны сильно влияет притяжение со стороны Солнца, несмотря на то что расстояние Солнце — Луна примерно в 400 раз больнге расстояния Земля — Луна. Сильное возмущение в параметрах геоцептрической орбиты Луны, порождаемое Солнцем, объясняется большой массой последнего (масса Солнца примерно в 330 000 раз больше массы Земли). Более столетня не удавалось построить такую теорию движения Луны, которая находилась бы в хорошем согласии с наблюдениями на относительно большом интервале времени (около 100—200 оборотов Луны). На математическом языке это означает, что не удавалось построить приближенное ренюяие дифференциальных уравнений движения Луны, пригодное для описания ее реального движения на большом (долгом) периоде.  [c.60]

В. В. Вагнер, известный современный математик, много занимавшийся механикой и геометрией неголономных систем, нашел такой способ реализации связи, т. е. такое управление движением, что уравнение связи оказывается линейным, дифференциальным. Данная реализация сходна с реализацией неголономной связи в задаче Чаплыгина — Каратеодори, но только не на плоскости, а на поверхности сферы. Но недавно был выявлен и такой весьма интересный факт (Д. Гриоли и Ю. А. Гартунг), получивший название обобщенной прецессии вектора угловой скорости . Так можно назвать движение тела, характеризуемое тем, что вектор угловой скорости тела должен располагаться в одной и той же подвижной плоскости, определяемой некоторой прямой в теле, проходящей через неподвижную точку тела, и некоторой прямой, неподвижной в пространстве, но проходящей через неподвижную же точку тела. При таком общем условии может иметь место множество разнообразных движений в зависимости от детализации налагаемой связи, т. е. в зависимости от заранее устанавливаемого вида относительного годографа вектора угловой скорости при его изменении в данной плоскости. Установлено, во-первых, что общее условие обобщенной прецессии выражается уравнением  [c.12]



Смотреть страницы где упоминается термин Дифференциальные уравнения относительного движения задачи многих тел : [c.208]    [c.121]   
Смотреть главы в:

Небесная механика Основные задачи и методы Изд.2  -> Дифференциальные уравнения относительного движения задачи многих тел



ПОИСК



Движение дифференциальное

Движение относительное

Дифференциальное уравнение движения

Дифференциальное уравнение, движени

Дифференциальные уравнения относительного движения

Задача многих тел

Задача п тел уравнения движения

Относительность движения

Уравнения относительно го движения

Уравнения относительного движения



© 2025 Mash-xxl.info Реклама на сайте