Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обработка металла инертным газом

Обычно к инертному газу добавляют кислород и продувают металл этой смесью. Тогда эффективность обезуглероживания при продувке резко возрастает. Повышению эффективности продувки также способствует снижение внешнего давления, т. е. при одновременной обработке металла инертным газом и вакуумом. Это видно из зависимости (108).  [c.158]

Благодаря высокой эффективности обработки жидкого металла инертными газами этот способ рафинирования нашел применение на ряде металлургических заводов Советского Союза и за рубежом.  [c.5]


Продувка металла инертным газом в известной мере влияет так же, как обработка вакуумом, так как парциальные давления водорода и азота в таком пузырьке равны нулю. При продувке инертным газом происходит интенсивное перемешивание металла, усреднение его состава в тех случаях, когда на поверхности металла наведен хороший шлак, перемешивание облегчает протекание процесса ассимиляции таким шлаком неметаллических включений. Масса пузырьков инертного газа облегчает процессы газовыделения, так как сами эти пузырьки являются готовыми полостями с развитой поверхность раздела, что очень важно для образования новой фазы.  [c.229]

Технически операция продувки больших масс металла инертными газами в ковше проще и дешевле, чем обработка вакуумом, поэтому там, где это возможно, продувка инертными газами заменяет обработку вакуумом приходится, однако, учитывать, что продувка инертным газом сопровождается снижением температуры металла.  [c.229]

Лазеры непрерывного действия на Oj применяют для газолазерной резки, при которой в зону воздействия лазерного луча подается струя газа. Г аз выбирают в зависимости от вида обрабатываемого материала. При резке дерева, фанеры, пластиков, бумаги, картона, текстильных материалов в зону обработки подается воздух или инертный газ, которые охлаждают края реза и препятствуют сгоранию материала и расширению реза. При резке большинства металлов, стекла, керамики струя газа выдувает из зоны воздействия луча расплавленный материал, что позволяет получать поверхности с малой шероховатостью и обеспечивает высокую точность реза. При резке железа, малоуглеродистых сталей и титана в зону нагрева подается струя кислорода.  [c.300]

Важным методом защиты является обработка среды с целью снижения ее агрессивности. В водных средах одним из основных окислителей является растворенный кислород. Снижение его концентрации проводят путем нагрева воды при пониженных давлениях, барботирования воды инертным газом, введения восстановителей (гидразин, сульфит натрия), пропускания воды через железные стружки и т. д. [471. В ряде случаев увеличение концентрации кислорода позволяет перевести металл в пассивное состояние. Этот прием применяется при защите теплообменной аппаратуры на атомных станциях [19 ]. Углекислый газ, растворимый в воде, понижает pH раствора и увеличивает агрессивность среды. Его концентрацию также снижают путем кипячения воды.  [c.48]


В процессе плавки могут использоваться т или не использоваться т.2 шлакообразующие Р . Рафинирование металла Р может производиться в печи т или вне печи Внепечное рафинирование Р, может заключаться в вакуумировании т, обработке синтетическими шлаками т , продувке инертными газами /пз, продувке инертными газами в смеси с кислородом ш , вакуум-кислородном обезуглероживании либо  [c.113]

Из опыта эксплуатации кулачковых и торсионных пластометров и задач, которые стоят в области изучения реологических свойств металлов и сплавов для процессов ОМД, можно определить требования, которым должны удовлетворять современные установки подобного типа - 1) широкий регулируемый скоростной диапазон испытаний в пределах 0,01—500 с 2) возможность получения больших степеней деформации (испытания на плоскую осадку, кручение) 3) возможность воспроизведения самых различных, заранее программируемых и управляемых с помощью ЭВМ законов нагружения как за один цикл испытаний, так и при дробном деформировании 4) возможность записи кривых релаксаций в паузах между нагружениями с длительностью пауз от 0,05 до 10 с 5) фиксация структуры металла с помощью резкой закалки образца в любой точке кривой течения 6) оснащение установок высокотемпературными печами для нагрева образцов до 1250 °С в обычной среде и в вакууме или среде инертного газа до 2000—2200 °С 7) возможность воспроизведения при испытаниях, особенно дробных, различных законов изменения температуры металла, фиксация температуры образца с помощью быстродействующих пирометров 8) возможность проведения испытаний не только при одноосных схемах напряженного состояния, но и в условиях сложнонапряженного состояния, особенно при исследовании предельной пластичности 9) обеспечение высоких требований по жесткости машин, по техническим характеристикам измерительной и регистрирующей аппаратуры, возможность стыковки с ЭВМ (УВМ) для автоматизированной обработки данных и управления экспериментом.  [c.49]

В последнее время термическую обработку и нагревание при ковке и штамповке проводят в атмосфере инертных газов (аргон, гелий), смеси азота с водородом и вакууме. При нагревании в перечисленных средах резко уменьшается глубина разрушения, что позволяет значительно снизить глубину механической обработки, существенно сократить расход ценного металла и обеспечить точную штамповку деталей.  [c.88]

Титан легко куется, штампуется и прокатывается при высоких температурах. Его можно деформировать при комнатной температуре. Многие сплавы титана, а также нелегированный технический титан хорошо свариваются в атмосфере инертных газов сваркой всех видов, кроме атомно-водородной. Титан можно соединять пайкой со сталями и цветными металлами. Титан можно подвергать механической обработке резанием. Его обрабатываемость близка к обрабатываемости аустенитной нержавеющей стали. Титановые сплавы можно подвергать термической и химико-термической обработке и тем самым изменять их механические свойства. Наконец, титановые сплавы можно применять для изготовления фасонных отливок.  [c.67]

Луч высокой интенсивности, создаваемый лазером, можно использовать для быстрого оплавления металла. Отсутствие непосредственного контакта источника и обрабатываемой детали позволяет вести процесс в вакууме или инертном газе. Малое время обработки в большой мере снижает возможности окисления металла, а также устраняет возможности укрупнения кристаллов наплавляемого металла.  [c.509]

Индукционная поверхностная закалка металлов и сплавов С 21 D 1/10 сварка В 23 К 13/00) Индукционные катушки (для нагрева электромагнитным полем Н 05 В 6/36, 6/44 в системах зажигания F 02 Р 3/02-3/04) насосы Н 02 К 44/06 печи С 21 С 1/06, В 21 J 1/06, 17/02, F 27 В 14/06) Индукционный нагрев <Н 05 В 6/02-6/44, 11/00 использование для соединения пластических материалов В 29 С 65/32, 65/46 в печах для термообработки С 21 D 1/42, 9/60 печей F 27 D 11/06) Иней предотвращение образования в холодильных агрегатах 11 /06 удаление из холодильных агрегатов 21/06-21/12) F 25 D] [Инертные газы, использование (В 01 J 19/14 для обработки металлов В 23 Q 11/00) Инерционные аккумуляторы энергии в устройствах передачи F 16 Н 33/08-33/18 амортизаторы F 7/10) F 16 двигатели F 03 G 3/00-3/08 насосы F 04 F 7/00-7/02 переключатели Н 01 Н 35/14 элементы для автоматических прерывателей F1 01 Н 50/82)]  [c.87]


Вакуумная обработка является одной из основных и сложных операций изготовления источников света. Она вклю чает такие важнейшие этапы, как удаление основной массы воздуха из о бъема ламп, обезгаживание стекла, люминофора и внутренних деталей ламп, активирование катода, введение в лампу паров металлов и разных соединений, наполнение ламп инертными газами, отпайка штенгеля, т. е.. получение герметичных приборов, обеспечивающих выполнение обоих функций в процессе эксплуатации.  [c.354]

Для получения германия со свойствами, необходимыми для применения Б электронике, в дальнейшем его подвергают различным видам обработки. В некоторых случаях германий прессуют или нагревают с последующей закалкой. Однако одним из самых лучших методов является легирование германия незначительными количествами соответствующих металлов. Некоторые из пригодных для этой цели сплавов были запатентованы [45, 821. Обычно легирование производят в атмосфере инертного газа или в вакууме. Разработан целый ряд остроумных методов введения в германий ничтожно малых количеств других металлов. Один из таких методов — диффузия D германий соответствующего металла, другой метод — электрохимическое травление.  [c.212]

Как химически активный металл, ниобий легко окисляется при довольно низких температурах его обработка даже при низких температурах должна производиться в вакууме или тщательно очищенном инертном газе.  [c.446]

Исследования кинетики процесса окисления углерода и хрома показали, что на границе пузырька и металла имеет место изменение концентрации элементов. Так, по данным Г. Кинга [34], при содержании хрома на границе раздела 5% и температуре 1700°С его концентрация в объеме металла составляет 5,5%, углерода соответственно 0,09 и 0,2%, кислорода 0,05 и 0,03%. Когда в металле остается 0,1% С и 5% Сг, система оказывается очень близкой к равновесной и скорость окисления углерода должна стать совсем низкой. При поступлении газообразного кислорода с той же скоростью начинается преимущественное окисление хрома. Лишь повышая тем-пературу или снижая давление СО с помощью вакуумной обработки или разбавления инертным газом, можно  [c.61]

Кислород - бесцветный газ, без запаха, тяжелее воздуха, плотность его при нормальном давлении и комнатной температуре 1,33 кг/м . Очень активен - соединяется со всеми химическими элементами, кроме инертных газов. Реакции веществ с кислородом экзотермические, идущие с выделением теплоты при высокой температуре, - это горение. Получают кислород из воздуха глубоким охлаждением или из воды электролизом. В первом случае воздух в несколько приемов сжимают, каждый раз отводя выделяющуюся теплоту. После каждого цикла сжатия воздух очищают от влаги и углекислого газа. При температуре -194,5 °С воздух становится жидким. Затем его разделяют на кислород и азот перегонкой (ректификацией), основанной на разности температур кипения жидкого азота (-196 °С) и кислорода (-183 °С). При ректификации жидкий воздух переливают в ректификационной колонне. Азот при этом испаряется и отводится через верхнюю часть колонны, а кислород сливается на ее дно. Часть его испаряется и отводится из колонны, а жидкий кислород закачивают в теплоизолированные цистерны (танки), в которых его транспортируют. К месту сварки кислород доставляют газообразным в баллонах синего цвета под давлением 150 кг/см (15 МПа). Ректификацией кислород доводят до чистоты не менее 99,2 % - это технический кислород 3-го сорта 2-й сорт содержит 99,5 %, а 1-й сорт - 99,7 % кислорода. Остальное- азот, аргон и другие примеси. Чем ниже чистота кислорода, тем хуже качество газопламенной обработки металла, особенно резки.  [c.53]

Магниевые сплавы. Основное преимущество магниевых сплавов по сравнению с остальными промышленными металлами — небольшая плотность (1700... 1800 кг/м ). Все магниевые сплавы имеют сравнительно высокую прочность (а = 200...400 МПа, 5 = 6...20%), хорошо поглощают вибрации. Однако из-за пониженного (4,3 10" МПа) модуля упругости пригодны лишь для мало нагруженных деталей. Магниевые сплавы обладают низкой коррозионной стойкостью, особенно в контакте с другими металлами. Недостатком также являются трудности литья и обработки давлением. Магниевые сплавы удовлетворительно свариваются дуговой сваркой в защитной среде инертных газов и хорошо обрабатываются резанием.  [c.219]

Для предотвращения насыщения расплава водородом исходная шихта должна быть сухой, плавку необходимо вести форсированно, защищая металл толстым слоем шлака, нейтральными атмосферами (аргон, гелий) и вакуумом. Для удаления газов из металла после плавки применяют продувку инертным газом и обработку вакуумом.  [c.239]

Магниевые сплавы хорошо обрабатываются резанием (лучше, чем стали, алюминиевые и медные сплавы), легко шлифуются и полируются. Высокие скорости резания и небольшой расход энергии способствуют снижению стоимости обработки резанием деталей из магниевых сплавов по сравнению с другими сплавами. Они удовлетворительно свариваются контактной роликовой и дуговой сваркой. Дуговую сварку рекомендуется проводить в защитной среде из инертных газов. Прочность сварных швов деформируемых сплавов составляет 90 % от прочности основного металла.  [c.378]

Газообразные СОТС обладают значительно большей по сравнению с жидкостями проникающей способностью, поэтому они находят применение при резании с большими скоростями, при обработке труднообрабатываемых материалов, а также в случаях, когда применение СОЖ недопустимо. Газообразные СОТС бывают активными и инертными. При обработке металлов используют воздух (наиболее часто встречающийся компонент), индивидуальные газы (кислород, озон, двуокись углерода), их смеси, а также аэрозоли (дисперсные газообразные среды).  [c.460]


В ряде случаев перед обработкой давлением металлы нагревают в печах с восстановительной атмосферой, в среде инертного газа, в  [c.443]

Следует отметить, что при прокатке в вакууме и в среде инертного газа существенно изменяются условия трения и энергосиловые параметры процесса обработки, что зависит во многом от роли окисных пленок металла.  [c.448]

В последнее время особое внимание уделяется производству листов из тугоплавких металлов. Однако оно сопряжено рядом трудностей при горячей обработке металлы интенсивно окисляются и загрязняются. Чтобы этого избежать, оборудование для обработки давлением помещают в специальные камеры, заполненные чистым инертным газом. Оборудование снабжено дистанционным управлением. Рабочие в этих камерах в случае необходимости работают в специальных скафандрах, напоминающих скафандры для космических полетов.  [c.463]

Дегазация, которой подвергается обычно готовый металл (по крайней мере, после окислительного рафинирования) примеси (газы Нг, N2) удаляются путем ва-куумирования и обработки металла инертным газом.  [c.27]

В настоящее время во все возрастающих масштабах применяются обработка металла синтетическими шлаками и порошкообразными материалами, вакуумная дегаза ция стали различными способами, вакуум-шлаковая обработка, продувка металла инертными газами, разливка в инертной атмосфере. Последние способы повышения качества стали обладают рядом преимуществ.  [c.5]

Расход инертного газа составляет обычно 1,5-3,0 мУт стали. В зависимости от массы жидкой стали в ковще снижение температуры стали при таком расходе аргона составляет 2,5-4,5°С/мин (без продувки металл в ковше охлаждается со скоростью 0,5-1,0°С/мин). Тепло при продувке дополнительно затрачивается на нагрев инертного газа и на излучение активно перемешиваемыми поверхностями металла и шлака. Большая часть тепловых потерь связана именно с увеличением теплового излучения, поэтому такой прием, как накрывание ковша при продувке крышкой, позволяет сократить потери тепла при этом одновременно снижается степень окисления обнажающегося при продувке металла. При выборе метода обработки учитывают, что при продувке через пористые огнеупоры обеспечивается максимальная поверхность контакта металл — инертный газ. Простым и надежным способом подачи газа является использование так называемого ложного стопора. Продувочные устройства типа ложного стопора безопасны в эксплуатации, так как в схему футеровки ковша не надо вносить никаких изменений, но они имеют существенный недостаток ложные стопоры (как и обычные) — устройства одноразового использования. В результате интенсивного движения вдоль стопора металлогазовой взвеси составляющие его огнеупоры быстро размываются. Более распространен другой способ продувки — через устанавливаемые в днище ковша пористые огнеупорные пробки в тех случаях, когда продувка производится одновременно через несколько пробок, эффективность воздействия инертного газа на металл существенно увеличивается. Пористые огнеупорные пробки вьщерживают несколько продувок.  [c.230]

Рост производства стали будет происходить за счет преимущественного развития конвертерного и электроплавильного способов производства стали при постепенном снижении выплавки стали в мартеновских печах, что расширит диапазон марочного сортамента и повысит качество стали. Доля электростали в общем объеме производства стали составит в 1985 г. 14,8% по сравнению с 10,7% в 1980 г., при этом удельный расход электроэнергии на выплавку 1 т стали возрастет соответственно с 90,9 до 112,2 кВт-ч/т. Большое распространение получат установки непрерывной разливки стали (УНРС). Предусматривается довести в 1985 г. выплавку стали с применением УНРС до 22,8% всей выплавки стали вместо 11,8% в 1980 г. На каждую тонну литой заготовки, разлитой на УНРС, расходуется дополнительно 25—28 кВт-ч электроэнергии. Однако при этом снижается расходный коэффициент металла для получения заготовки с 1,2 до 1,05 и достигается экономия топлива на нагрев слитков в объеме 36—45 кг/т (в условном топливе) и экономия электроэнергии на прокат слитков на обжимных станах —18— 20 кВт-ч/т. С целью повышения качества металла предусматривается широкое развитие обработки стали синтетическими шлаками, инертными газами, применение вакуумирования, электрошлакового и вакуумно-дугового переплава, микролегирования и других прогрессивных методов. При этом удельный расход электроэнергии повышается в 2—3 раза по сравнению со средним удельным расходом электроэнергии на выплавку электростали.  [c.53]

Основным ядерным горючим является природный и обогащенный уран, хотя можно пользоваться также плутонием и искусственными изотопами урана В энергетических реакторах уран может применяться в виде чистого металла или сплайа с металлами, имеющими малое поперечное сечение захвата нейтронов, например, с алюминием или цирконием. Существуют три аллотропические разновидности урана до температуры 660° С а-уран, имеющий ромбическую кристаллическую решетку в интервале температур 660—760° С— Р-уран с тетрагональной устойчивой решеткой от 760° С и до точки плавления — у-уран, для которого характерна объемноцентрирован-ная кубическая решетка. Уран очень быстро подвергается коррозии от соприкосновения с водой, водяным паром, воздухом, жидкими металлами и другими средами. Следовательно, температура теплоносителя не должна превышать 500—600° С, а механическая и термическая обработка урана должна производиться с соблюдением соответствующих противокоррозионных мер — с использованием защитных атмосфер из инертных газов, специальных смазок и флюсов.  [c.13]

При нагреве, а также в расплавленном состоянии титан энергично взаимодействует с газами, углеродом, серой и большинством металлов, что определяет особенности его получения и обработки. Соединения титана с углеродом (Ti ), и кислородом (TiOj) очень прочны и не восстанавливаются до чистого металла даже наиболее сильными восстановителями. Титан высокой степени чистоты (99,8% Ti) получают путем термического разложения четырехиодистого титана в вакууме, а технический титан — восстановлением четыреххлористого титана магнием или натрием в атмосфере инертного газа—аргона.  [c.302]

Упрочнение методами электроискровой обработки применяют для повышения износостойкости и твердости поверхности деталей машин, работающих в условиях повышенных температур в инертных газах жаростойкости и коррозионной стойкости поверхности долговечности металлорежущего, деревообрабатывающего, слесарного и другого инструмента создания шероховатости под последующее гальваническое покрытие облегчения пайки обычным припоем труднопаяемых материалов (нанесение промежуточного слоя, например меди) увеличения размеров изношенных деталей машин при ремонте изменения свойств поверхностей изделий из цветных металлов и инструментальных сталей.  [c.274]

При нагревании торня для горячей обработки необходимо учитывать его химическую активность. Нагревание можно проводить в расплаве солей (смесь хлоридов бария, калия п натрия) [131] или торий можно покрывать другим металлом, например медью [721. Горячую обработку — прессование, ковку, прокатку, штамповку пли комбинацию этих операций — обычно производят при температуре 650—950 . Ввиду химического сродства нагретое тори я к кислороду и азоту воздуха сварку тория необходимо производить в защитной атмосфере инертного газа.  [c.805]


Очистку цинковых сплавов от металлических и неметаллических примесей проводят отстаиванием, обработкой хлоридами, продувкой инертными газами, фильтрованием. Наиболее эффективным способом очистки цинковых сплавов от оксидов и интерметалл идов является фильтрование через мелкозернистые магнезитовые фильтры. Средний диаметр зерен магнезита 2—3 мм толщина фильтрующего слоя 100 мм. Эффективность очистки составляет, % по оксидным включениям до 90 и по интерметаллид-ным — 85. Фильтрование ведут через нагретый фильтр ( 500 °С), который помещают в специальный стакан, погружаемый в раздаточную печь, или при переливе металла из печи—в ковш или изложницу. Особенно эффективно фильтрование типографского цинка перед заливкой сплава в изложницу.  [c.308]

Уже при содержании названных газов в количестве менее 1% происходит недопустимое снижение пластичности. Поэтому при сварке участки шва н зона термического влияния, нагретые выше 400° С, должны быть защищены от доступа газов атмосферы. Наиболее целесообразна электроннолучевая сварка в высоком вакууме. Наиболее распространена аргоио-дуговая сварка вольфрамовым или плавящимся электродом. Применяемые для этой цели сопла для защитного газа должны иметь больший диаметр, чем, например, при сварке алюминия. Кроме того, еще горячие участки шва позади горелки должны быть защищены дополнительным козырьком с потоком аргона, который покрывает также и зону термического влияния основного металла. Возможна сварка под безкислородными флюсами. Термическую обработку ведут в вакууме или в инертном газе.  [c.102]

Специальная обработка жидкой стали вакуумная (дегазация в ковше дегазация струи металла при разливке дегазация порциями) продувка газами (например, инертным газом — Аг, N) применение шлаковых реакций (например, метод Перрека).  [c.422]

Для получения качественного сварного соединения титана в нем ограничивают содержание азота, кислорода, водорода и углерода с этой целью защищают металл шва и околошовной зоны при сварке инертными газами. Для защиты шва и околошовной зоны от воздуха применяют горелки с козырьком. Корень шва защищают плотным поджатием кромок свариваемых деталей к медной или стальной подкладке и подачей инертного газа в подкладку, изготовленную из пористого. материала. Механические свойства и структуру металла шва и околошовной зоны /южно регулировать выбором наиболее рациональ-, ных режимов и технологии сварки, а также последующей термической обработкой, Аргоно-дуговую сварку титана в инертных газах выполняют в среде аргона марок А и Б постоянным током прямой полярности.  [c.203]

Отжиг в инертном газе, например в аргоне, или обработку под вакуумом применяют для дегазации эти обработки часто благоприятно действуют на прочность сцепления покрытия. Температура отжита и его п . одолжительность должны быть подобраны таким образом, чтоС. ы по возможности избежать заметной диффузии металла покрь. гия внутрь бериллия. Зона диффузии для никелевого покрытия становится заметной после 18-ч нагрева при температуре 350—400°С, для железных покрытий 500—550°С. Для медных и хромовых покрытий зон диффузии замечено не было. Поэтому комбинации этих покрытий рекомендуют для деталей, которые будут подвергаться действию повышенных температур.  [c.390]

Запатентован способ науглероживания титана в проточной смеси, содержащей 0,5—1% (объемн.) газообразных углеводородов ряда С Н2 +2 (например, метан, пропан) или ряда С Н2 (например, пропилен) и инертный газ — носитель (аргон). Оптимальные параметры процесса температура 930—980° С, содержание пропана в смеси 0,8% (объемн.), время выдержки 8 ч, скорость газового потока И m Imuh на каждые 100 см поверхности обрабатываемого металла. Охлаждать изделия после насыщения необходимо в инертной среде. Рекомендованный режим обработки обеспечивает получение твердых, прочно сцепленных с основным материалом карбидных слоев, хорошо сопротивляющихся износу и схватыванию. Исследование структуры слоя показало, что она имеет решетку карбида титана с дефицитом по углероду и твердостью 1200—1500 кПмм (по Кнупу). Оптимальными свойствами обладает слой толщиной около 5 мкм, полученный на шлифованной поверхности.  [c.144]

Восстановление ведется в специальных герметически закрытых аппаратах в среде инертных газов, например, аргона. Магний расплавляют и через жидкий металл пропускают пары Ti l4, который реагирует с магнием и восстанавливается процесс ведется при 850—950°. В результате образуется продукт, который после охлаждения представляет собой смесь из титана, хлористого магния и избытка магния. Этот продукт далее подвергают механической и химической обработке с целью извлечения металлического титана. Титан получается пористый в виде губки, которая переплавляется в порошкообразном состоянии или в виде прессованных электродов.  [c.84]

Рафинирование. Сплавы рафинированием освобождают от пе-нулшых и вредных примесей. Для удаления вредных примесей (серы и фосфора) из чугупа и стали металл рафинируют марганцем и известняком. Рафинирование и дегазацию выполняют продувкой алюминиевых сплавов активными газами (хлором), инертными газами (азотом, аргоном). Рафинируют и другими способами, например обработкой сплавов хлористыми солями или вакуумированнем.  [c.202]


Смотреть страницы где упоминается термин Обработка металла инертным газом : [c.6]    [c.111]    [c.212]    [c.310]    [c.119]    [c.196]    [c.186]    [c.188]    [c.171]    [c.438]   
Металлургия стали (1977) -- [ c.294 ]



ПОИСК



Газы в металлах

Газы инертные

Инертность

Н инертные



© 2025 Mash-xxl.info Реклама на сайте