Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Термодинамика (определение)

Поэтому прежде чем переходить к разбору различных ррт-2, нужно еще уделить и некоторое внимание разбору второго закона термодинамики, хотя это потребует от читателя, не занимающегося специально термодинамикой, определенной сосредоточенности.  [c.118]

В курсах термодинамики определение температуры торможения делается без оговорки на отсутствие трения, поскольку там в полное уравнение энергии работа трения не входит ни полностью, ни частично.  [c.88]


По принятому в классической термодинамике определению обратимого процесса для обращения данного процесса (для возвращения рабочего тела в первоначальное состояние), помимо равновесности состояний тела и его сопряжений с внешней средой, необходимо обеспечить обратимость всех внешних воздействий, т. е. необходимо, чтобы все эффекты взаимодействия тела с внешней средой, имевшиеся в прямом процессе, остались в обратном процессе неизменными по абсолютному значению, а изменились бы только их знаки. Остановимся на последнем условии. Нетрудно  [c.57]

В современной теплотехнике имеются тепловые машины (в частности, ракетные двигатели), в которых процесс превращения тепловой энергии в механическую совершается при неизменном состоянии рабочего вещества. Если исходить из принятого в технической термодинамике определения термодинамического (тепломеханического) процесса как последовательности изменений состояния рабочего тела, то можно прийти к отрицанию наличия процесса в указанной машине. В термодинамике тела переменной массы тепломеханический процесс определяется как сумма последовательности внешних воздействий и изменений состояний рабочего тела и рабочего вещества.  [c.82]

Часто вместо термина термодинамическая система используется более простой термин, а именно система , вместо рабочее тело — просто тело и т, д. Термин окружающая среда также может быть заменен более кратким термином среда . Приведенное понятие о термодинам-ической системе не может быть признано исчерпывающим, поскольку Комитетом технической терминологии АН (ХСР этот термин наряду с такими, как теплота, работа, температура, масса и т. д., выходящими за рамки термодинамики, определен не был.  [c.9]

Термическое сопротивление 235 Термодинамика (определение) 193  [c.782]

Третий закон термодинамики. Определение энтропии (1.18) носит абсолютный характер. По определению, она всегда неотрицательна (ТУ>1). Для реальных квантовомеханических систем обычно можно предположить существование наинизшего основного состояния. Если плотность системы остается конечной, то при энергии, стремящейся к низшему значению, т. е. к нулю, 1п О Е) будет стремиться к значению, не зависящему от N или V, т. е. от размеров системы. Следовательно, утверждение о том, что 8- 0 (при Е О), является следствием квантовомеханического определения (1.18) для реальных физических систем. Однако это не означает, что в реальном эксперименте мы обязательно получим 5" -> О при Г 0. Может оказаться, что во время эксперимента не будет достигнуто наинизшее состояние системы, так как движение частиц чрезвычайно замедляется при приближении температуры к нулю. Когда происходит такое замораживание системы, наблюдаемое значение энтропии стремится к ненулевому значению (примером такой системы является стекло).  [c.33]


Физические свойства макроскопических систем изучаются статистическим и термодинамическим методами. Статистический метод основан на использовании теории вероятностей и определенных моделей строения этих систем и представляет собой содержание статистической физики. Термодинамический метод не требует привлечения модельных представлений о структуре вещества и является феноменологическим (т. е. рассматривает феномены — явления в целом). При этом все основные выводы термодинамики можно получить методом дедукции, используя только два основных эмпирических закона (начала) термодинамики.  [c.6]

Назначением теплосиловых установок является производство полезной работы за счет теплоты. Источником теплоты служит топливо, характеризующееся определенной теплотой сгорания Q. Максимальная полезная работа /. акс, которую можно получить, осуществляя любую химическую реакцию (в том числе и реакцию горения топлива), определяется соотношением Гиббса (1839—1903) и Гельмгольца (1821 —1894), получаемым в химической термодинамике  [c.56]

С понятием температуры тесно переплетается (и часто путается) понятие теплоты. Из повседневного опыта известно, что для нагревания одних веществ требуется больше тепла, чем для других, однако непосредственно не очевидно, почему это так. Тем не менее при достаточной проницательности на основании повседневного опыта можно сделать ряд весьма фундаментальных выводов относительно теплового поведения вещества эти выводы включают законы термодинамики. Нулевой закон, названный так потому, что он был сформулирован после первого и второго законов, касается состояния тел, приведенных в тепловой контакт друг с другом. Чтобы ясно понять, что это значит, прежде всего необходимо уточнить ряд понятий. Приведенные ниже определения хотя и не являются строгими, позволяют нам сделать несколько общих замечаний о смысле температуры и теплового поведения веществ, которые полезны при введении в термометрию. Более подробное обсуждение основ теплофизики читатель может найти в монографиях по термодинамике и статистической механике, указанных в списке литературы к данной главе.  [c.12]

Выше упоминалось, что состояние теплового равновесия изолированной системы полностью описывается лишь небольшим числом параметров. Эти физические величины имеют определенное значение для каждого теплового состояния, и в термодинамике они называются параметрами (или переменными) состояния, или термодинамическими параметрами (или переменными). Если выбрать совокупность независимых параметров так, чтобы она была необходимой и достаточной для описания термодинамического состояния, то остальные параметры, характеризующие состояние, являются функциями выбранных параметров. Число независимых параметров, необходимых для описания равновесного состояния системы, определяется эмпирическим путем.  [c.14]

Однако прежде чем перейти к этому, нужно сделать на основании цикла Карно еще один вывод, который ведет к определению другой очень важной физической величины в термодинамике, тесно связанной с температурой,— энтропии системы. Если рассмотреть обратимый цикл Карно для случая, когда две адиабаты цикла очень близки друг к другу, то количества тепла становятся бесконечно малыми и вместо (1.3) можно записать  [c.18]

Итак, мы коротко обсудили, каким образом основные параметры состояния в классической термодинамике Т п 5 связаны с соответствующими параметрами 0 и И в статистической механике. Важная роль постоянной Больцмана к очевидна она обеспечивает связь между численными значениями механических (в классической или квантовой механике) и термодинамических величин. Здесь следует отметить еще одно уточнение величины температуры, вытекающее из уравнения (1.16). Температура является параметром состояния, обратно пропорциональным скорости изменения логарифма числа состояний как функции энергии для системы, находящейся в тепловом равновесии. Поскольку число состояний возрастает пропорционально очень высокой степени энергии, то определенная таким образом температура всегда будет положительной величиной.  [c.22]


Уравнение состояния во многих разделах технической термодинамики (в теплотехнических расчетах, в определении параметров состояния и физических величин газа, в исследовании циклов тепловых двигателей и т. д.) играет большую роль.  [c.23]

Безупречное определение температуры, не зависящее от свойств применяемого вещества, предложил Кельвин на основании второго закона термодинамики.  [c.132]

При расчете процессов истечения водяного пара ни в коем случае нельзя применять формулы для определения скорости (13-14) и секундного массового расхода (13-16), полученные применительно к идеальному газу. Расчет ведется исходя из общей формулы скорости истечения (13-6), полученной из уравнения первого закона термодинамики для потока и справедливой для любого реального вещества.  [c.213]

Давление р нельзя определить произвольно, так как оно должно соответствовать определению давления в термодинамике через кинетическую энергию движения молекул.  [c.572]

Открытие вихревого эффекта и его последующее изучение неразрывно связаны с экспериментальным усовершенствованием конструкций вихревых труб, направленным на повышение его интегральных термодинамических характеристик аГ , ЛТ , л, и Все экспериментальные работы, посвященные исследованию вихревого эффекта, можно отнести к одной из двух фупп повышение эффективности вихревых труб оптимизацией формы камеры энергоразделения, соплового ввода и конструктивных размеров, определенно влияющих на термодинамику процесса энергоразделения  [c.49]

Термодинамика выделения фаз при распаде твердых растворов. Распад характерен для твердых растворов, имеющих ограниченную и изменяющуюся с температурой растворимость. Распад происходит у твердых растворов тех составов, которые в определенном диапазоне температур становятся пересыщенными. При этом возможно выделение фаз твердого раствора другого типа и состава или промежуточных фаз. Для технических сплавов наиболее частый случай — распад с выделением промежуточных фаз (карбидов, нитридов, гидридов, интерметаллидов), отличающихся от исходного твердого раствора типом кристаллической решетки. Изменение свободной энергии твердого раство-  [c.496]

Предмет исследования обобщенно называют в термодинамике системой. Это любой макроскопический материальный объект, выделенный из внешней среды с помощью реально существующей или воображаемой граничной поверхности. Системой может быть изучаемый образец вещества, электромагнитное поле в ограниченном пространстве, тепловая машина и т. д. Если возникнет необходимость детализировать внутреннее строение системы, рассматривают ее макроскопические части — подсистемы. Система — это модель реального объекта исследования, отражающая его существенные для термодинамики качественные и количественные признаки. Так, способ передачи энергии через граничные поверхности задается в виде качественной характеристики — определенных ограничений на пропускную способность этих поверхностей. Если система не может обмениваться с внешней средой энергией, то ее называют изолированной, если же веществом — то закрытой. В адиабатически изолированной системе невозможен теплообмен с внешней средой, в механически изолированной — работа. Систему, которая может обмениваться с окружением веществом, а следовательно, и энергией, называют открытой системой. С той же целью, указать способ обмена энергией и веществом, применяют понятия теплового (термического), механических и диффузионных контактов. Открытая система имеет диффузионные контакты с внешней средой, а для изолированной любые контакты с ней невозможны.  [c.10]

Если в системе наблюдаются большие градиенты или скорости изменения свойств, то характеризовать ее величинами, не зависящими от времени и от пространственных координат, невозможно, как нельзя, например, сказать что-либо определенное о давлении газа, расширяющегося в вакууме, или о температуре тела в целом, если разные части его нагреты по-разному. В рамках термодинамики нельзя указать, какие именно градиенты-и скорости изменения свойств при этом допустимы. Уместно тем не менее дать следующую практическую рекомендацию термодинамические свойства существуют, если их удается с требуемой точностью измерить. Мы будем еще неоднократно обращаться к такому экспериментальному критерию справедливости термодинамического описания и постараемся пояснить его физическое содержание.  [c.13]

Для применения приведенных выше формальных определений, таких как термодинамические состояния, интенсивные и экстенсивные переменные и другие, необходимы физические обоснования их реальности. В термодинамике для этого используются экспериментальные факты, полученные в результате наблюдений за реальными физическими объектами и сформулированные на языке принятых понятий в виде некоторых постулатов.  [c.19]

Однако, в отличие от теплового контакта при механическом или диффузионном контакте системы и внешней среды для выравнивания соответствующих интенсивных свойств на граничной поверхности системы необходимо, чтобы изменялись ее внешние свойства (объем, массы компонентов и др.). Зависимость же состояния от внешних свойств, т. е. от индивидуальности выбранной системы и внешних воздействий на нее, следует уже из определения этих свойств и является очевидной ез дополнительных постулатов. Поэтому в термодинамике постулируется существование только термического равновесия и температуры, другие же термодинамические силы (давление, химические потенциалы компонентов и другие интенсивные переменные, выравнивание которых на граничной поверхности системы является необходимым условием соответствующего контактного равновесия) получаются как следствия применения к равновесным системам второго закона термодинамики (см. гл. 5).  [c.23]


Последнее обстоятельство следует отметить особо в термодинамике рассматриваются вполне определенные, возможные при заданных условиях, а не любые мыслимые вообще процессы и равновесия. При рассмотрении химических реакций, напрнмер, не учитываются ядерные превращения в веществах, хотя любая реальная химическая система не равновесна по отношению к этим превращениям [6].  [c.35]

Функции процессов могут зависеть от тех же термодинамических переменных, что и функции состояния, т. е. свойства системы, но в отличие от последних они в общем случае зависят и от способа (пути) изменения переменных при переходе системы из одного состояния в другое. Поскольку и функции процессов, и функции состояния входят совместно в уравнения термодинамики, часто возникает необходимость различать их по каким-либо формальным математическим признакам. Один из таких признаков можно указать, рассматривая процесс, в конце которого термодинамические переменные приобретают свои начальные значения, т. е. система в результате ряда изменений возвращается в свое исходное состояние (круговой процесс или цикл). В соответствии с данными выше определениями для любых функций состояния У криволинейный интеграл по замкнутому контуру в пространстве термодинамических переменных  [c.40]

Об энергии ранее говорилось неоднократно, но это свойство не определялось в надежде на то, что оно уже привычно читателю, встречавшему его во всех других разделах физики. Но хотя понятие энергии относится к числу самых общих, оно является в то же время одним из наиболее трудных для строгого определения. Наглядное представление об энергии можно получить, рассматривая различные микроструктурные составляющие ее на основе теории строения вещества. Термодинамику интересуют внутренние состояния тел, поэтому кинетическая и потенциальная энергия системы в целом, если она не влияет на термодинамические свойства, во внимание не принимается.  [c.41]

Приведенное пояснение не отвечает, однако, на вопрос что же называют энергией Последовательное определение любого физического свойства должно прямо или косвенно указывать на способ, которым оно может быть измерено. Энергия может быть измерена только с помощью своих внешних проявлений — теплоты н работы. Поэтому определением энергии, достаточным для термодинамики, является ее первый закон, связывающий эти понятия между собой. Существует аддитивная функция состояния термодинамической системы — внутренняя энергия. Мерой изменения внутренней энергии являются количество поступающей в систему теплоты и совершаемая ею работа  [c.42]

Полный дифференциал любой функции состояния согласно выводам 2 должен содержать хотя бы один частный дифференциал внутренней переменной, например температуры. Выражение (5.7) не удовлетворяет этому требованию, следовательно, оно не является полным. дифференциалом (нарушено условие (4.8)), что означает зависимость работы в термодинамике от способа изменения переменных в процессе ее совершения, т. е. работа — функция процесса, а не состояния. Это же следует и непосредственно из определения (5.2). Действительно, термическое уравнение состояния, например (2.1), указывает на зависимость X,- не только от у/, но и от Т. Поэтому при разных температурах под интегралом в (5.2) стоят по существу разные функции Х(у), т. е. работа W — функционал. (Этим. объясняется знак вариации б, используемый часто для обозначения бесконечно малых и Q.)  [c.44]

Рассмотрим, далее, виртуальные изменения (вариации) состояния нашей системы, под которыми понимают произвольные, но возможные, т. е. допустимые условиями задачи, изменения состояния. В данном случае, поскольку имеется тепловой контакт между частями системы, возможны вариации их внутренних энергий, но невозможны вариации энергии всей (изолированной) системы. Что же касается, например, объемов, то по условиям задачи их вариации невозможны ни у частей, ни у системы в целом. Поскольку система равновесная, невозможны никакие самопроизвольные изменения ее состояния. Следовательно, в отличие от действительно происходящих в системе изменений рассматриваемые виртуальные изменения могут не соответствовать термодинамическим законам и постулатам, которым должны подчиняться все действительно протекающие процессы. Иначе говоря, направление виртуальных изменений может совпадать с направлением любых действительных изменений в неравновесной системе, но обратное утверждение неверное. В рамках термодинамики вариации состояний или термодинамических переменных — это некоторый мысленный эксперимент над интересующей системой, в ходе которого определенные свойства ее считают спонтанно изменившимися по сравнению с их равновесными значениями и, далее, следят, как система реагирует (в соответствии с законами термодинамики) на такие внешние возмущения. Если же учесть микроскопическую картину явления, то становится ясным, что подобные изменения свойств действительно происходят в природе и без каких-либо внешних воздействий на систему с помощью флюктуаций макроскопических величин природа сама непрерывно осуществляет упомянутый эксперимент. Бесконечно малые первого порядка — виртуальные и действительные изменения термодинамических величин — мы будем обозначать символами б и d соответственно.  [c.51]

Рассмотренные выше примеры касались однородных закрытых систем, и поскольку переменные химического состава в них не использовались, то полученные выводы справедливы либо при равновесных химических превращениях веществ в системе, либо при полном отсутствии таковых. Усложнения, появляющиеся при анализе открытых систем или систем с неравновесным химическим составом, вызваны прежде всего увеличением числа аргументов характеристических функций. Можно и в этом случае попытаться применить рассмотренную последовательность получения термодинамических характеристик, т. е. по-прежнему изучать зависимости Ср(Т), V T, Р) и т. п., но при определенных, фиксированных химических составах. Такой путь был бы, однако, неоправданно трудоемким, если в начале его не ориентироваться на использование уравнений Гиббса—Дюгема. Для применения последних надо знать прежде всего зависимость свойств от состава фазы, и определение этих зависимостей при параметрах 7, Р составляет основную задачу экспериментальной термодинамики растворов.  [c.95]

Законы термодинамики, определенные эмпирически, выражают приблизительное и вероятное поведение систем, состоящих из большого числа частиц или, точнее, они выран ают законы механики подобных систем так, как они представляются существам, не обладающим достаточной тонкостью восприятия для того, чтобы оценивать величины порядка тех, которые относятся к отдельным частицам, п не могущим повторять свои опыты настолько часто, чтобы получить какие бы то ни было результаты, кроме наиболее вероятных. Законы статистической механики применимы к консервативным системам с любым числом степеней свободы и являются точными. Это не значит, что эти законы труднее установить, нежели приближенные законы для систем с очень большим числом степеней свободы или для С1 Сциальных классов таких систем. Скорее верно обратное, так как наше внимание не отвлекается от того, что сущо-ственно обусловлено особенностями рассматриваемой системы, и мы не вынуждены удовлетвориться предположением, что эффект величин и обстоятельств, которыми мы пренебрегли, в полученном результате можно будет также не принимать во внимание. Законы термодинамики легко могут быть получены из принципов статистической механики, неполным выражением которых они являются, но сами они являются, пожалуй, несколько слепым проводником в наших поисках этих законов. В этом, вероятно, главная причина медленности развития рациональной термодинамики, контрастирующей с быстрым выводом с.ледствпй из ее эмпирических законов. К этому необ-  [c.13]


Вторая группа уравнений представляет запись определенных физических законов, описывающих поведение конкретных материалов. Вид этих уравнений зависит от класса рассматриваемых материалов значения параметров, появляющихся в уравнениях, зависят от конкретного материала. Имеются в основном четыре уравнения этой группы. В недавнем весьма общем подходе Коле-мана [1—3]рассматриваются уравнения, в точности определяющие следующие четыре зависимые переменные внутреннюю энергию, энтропию, напряжение и тепловой поток. Этот подход будет обсуждаться в гл. 4. На данном этапе мы предпочитаем значительно менее строгий подход, в котором используются понятия, взятые из классической термодинамики. При таком упрощенном подходе по-прежнему используютсячетыреуравнения, описывающие поведение рассматриваемых материалов термодинамическое уравнение состояния, которое представляет собой соотношение между плотностью, давлением и температурой реологическое уравнение состояния, связывающее внутренние напряжения с кинематическими переменными уравнение для теплового потока, связывающее тепловой поток с распределением температуры уравнение, связывающее внутреннюю энергию с существенными независимы-  [c.11]

Проведение определенных границ знaчeния AGj, вне которых можно установить возможность или невозможность самопроизвольного протекания процесса на основании значения AGj-, довольно трудно. Некоторые исследователи, например термодинамик Додж, указывают на ориентировочную величину AGf = 10 ООО кал/моль.  [c.20]

Определение температуры как физической величины, являющейся одной из фундаментальных в термодинамике, непосредственно связано с упомянутыми выше основными законами термодинамики. Обычно, исходя из первого закона тер-]лодинамики и используя формулировку Кельвина для второго закона, доказывают, что для обратимой тепловой машины, работающей по циклу Карно между температурами 01 и 02, отношение количества тепла Оь поглощенного при более высокой температуре 0ь к количеству тепла Оъ отданного при более низкой температуре 02, просто пропорционально отношению двух одинаковых функций от каждой из этих двух температур  [c.17]

Эти соотношения позволяют найти величину всех трех термоэлектрических эффектов, если известен хотя бы один и если 5 или р, известны в небольшом интервале температур вблизи Т. Применяемые на практике методы определения 5, р и П изложены в работах Бернара [3] и Блатта [12]. При выводе приведенных выше соотношений Томсон полагал, что такие обратимые процессы, как эффекты Пельтье и Томсона, можно рассматривать вне зависимости от происходящих одновременно необратимых явлений теплопроводности и выделения джоулева тепла. Наличие необратимых процессов делает сомнительным применение второго начала термодинамики в обратимой форме, однако Томсон получил правильный результат. Общая теория, рассматривавшая одновременно обратимые и необратимые процессы, была развита в 1931 г. Онсагером [47, 48]. Ее основы изложены Бернаром [3].  [c.271]

Отношение между рассмотренным в данной главе подходом, связанным с осреднением более элементарных уравнений, п рассмотренным в гл. 1 феноменологическим подходом, аналогично известному отношению, имеющемуся между статистической физикой и механикой сплошной среды, между статистической физикой и термодинамикой, между молекулярно-кинетической теорией газа и газовой динамикой и т. д. В отличие от чисто феноменологического подхода нри осреднении микроуравнений для макроскопических параметров, таких, как макроскопические тензоры напряжений в фазах, величины, определяющие межфазные взаимодействия, получаются выражения, которые позволяют конкретнее представить их структуру и возможные способы их теоретического и экспериментального определения. С этой целью ниже рассмотрено получение уравнений сохранения массы, импульса, момента импульса и энергии для гетерогенных сред методом осреднения соответствующих уравнений нескольких однофазных сред с учетом граничных условий на межфазных поверхностях. При этом для упрощения рассматривается случай смеси двух фаз.  [c.52]

Речь идет здесь о так называемой эмпирической температуре, которая зависит от свойств термометрической системы С. Более определенная абсолютная шкала температур появляется в связи со вторым законом термодинамики (см. 6). Подчер-  [c.22]

Естественно, процесс переноса должен быть обратимым, так как только при этом условии работа имеет определенную величину. Энергия и энтропия известны в термодинамике с точностью до произвольных постоянных. Поэтому всегда можно условиться считать какое-либо определенное состояние чистого компонента системы имеющим нулевую энергию и энтропию (стандартное состояние) и обосновать этим выбором возможность измерения частной производной dUldti )s,b и указанный выше физический смысл величины fXi.  [c.62]

Существуют экспериментальные методы, поз1Воляющие измерять относительные значения химических потенциалов компонентов раствора непосредственно (методы гетерогенных равновесий), но для их определения пригодны и измерения обычных общих, интегральных, как их называют в термодинамике растворов, свойств. Формулы, связывающие химические потенциалы и другие парциальные свойства комионентов раствора с интегральными свойствами, основываются на соотношениях (3.9), (3.10), (3.14), частными случаями которых являются  [c.96]

В гетерогенных системах при фиксированных некоторых координатах возможны нейтральные равновесия за счет перераспределения веществ между гомогенными частями без изменения их интенсивных свойств. Такие процессы называют фазовыми реакциями. При использовании ограничений на термодинамические свойства гетерогенной системы они должны исключаться из рассмотрения. Запрет на определенные процессы не является, однако, чем-то особенным, исключительным с точки зрения методов термодинамики, поскольку понятие термодинамического равновесия имеет смысл лишь тогда, когда конкретно указаны все возможные, допустимые в системе процессы (см. 4). Поэтому можно условиться не рассматривать фазовые реакции, считая их запрещенными, что позволяет, как уже говорилось, выяснить аналогию между устойчивостью равнове-си71 в гомогенных и в гетерогенных системах. С другой стороны, если допустить возможность протекания в гетерогенной системе фазовых реакций, то удается обнаружить существенные особенности поведения гетерогенных систем (подробнее см. [6]).  [c.128]

При расчетах конкретных равновесий этот рассмотренный выше академический этап общего термодинамического исследования с выводом аналитических зависимостей для свбйств систем является промежуточным между формулировкой задачи н получением конечных численных результатов. Он необходим для понимания смысла всей проводимой работы, для дальнейшего использования, корректировки ее результатов, сопоставления их с другими данными, однако он не яаляется обязательным для выполнения самого расчета равновесия. Такие расчеты могут основываться не на равенствах химических потенциалов или иных формулах, получающихся при детализации исходных принципов термодинамики, а на самих этих принципах непосредственно. Возможность исключить излишнюю с точки зрения получения конечного результата аналитическую разработку проблемы появляется благодаря использованию числеиш.ьч методов решеиия термодинамических задач. Последние могут при этом формулироваться в самом общем виде, как задачи на поиск условного экстремума определенной (характеристической) функции при заданных ограничениях на переменные. С одной стороны, такая формулировка следует непосредственно из критериев термодинамического равновесия, с другой — она соответствует формулировкам задач математического программирования.  [c.166]


Смотреть страницы где упоминается термин Термодинамика (определение) : [c.95]    [c.148]    [c.11]    [c.19]    [c.16]    [c.13]    [c.34]    [c.68]    [c.104]    [c.116]   
Метрология, специальные общетехнические вопросы Кн 1 (1962) -- [ c.193 ]



ПОИСК



Исходные понятия и определения термодинамики

Калориметрическое определение термодинамических функций и третий закон термодинамики

Определение. Особенности. Термодинамика. Механизм, кинетика модели. Классификация и параI метры процесса

Определения термодинамики работа и тепло

Основные законы термодинамики Основные понятия и определения

Основные понятия и определения равновесной термодинамики

Предмет технической термодинамики и основные определения

Предмет технической термодинамики. Основные понятия и определения

Применения термодинамики Глава десятая Термодинамика различных физических систем Термодинамика гальванических и топливных элементов Определение химического сродства

Термодинамика

Термодинамика (определение) аналитическое выражение

Термодинамика (определение) обобщенные выражения первого начала

Техническая термодинамика и основы теплопередачи Раздел первый ТЕХНИЧЕСКАЯ ТЕРМОДИНАМИКА Основные понятия и определения



© 2025 Mash-xxl.info Реклама на сайте