Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Числовое программное управление применение

По виду программоносителя все системы управления рабочими органами станков можно разделить на четыре группы системы управления с упорами, системы управления с копирами, системы управления распределительным валом с кулачками и системы цифрового (числового) программного управления. Применение этих систем для автоматизации перемещения рабочих органов станков позволяет освободить рабочего от выполнения различных вспомогательных работ и повысить производительность труда.  [c.7]


Развитие и совершенствование любого производства в настоящее время связано е его автоматизацией, созданием робототехнических комплексов, широким использованием вычислительной техники, применением станков с числовым программным управлением. Все это составляет базу, на которой создаются автоматизированные системы управления, становятся возможными оптимизация технологических процессов и режимов обработки, создание гибких автоматизированных комплексов.  [c.3]

Известно, что один станок с числовым программным управлением позволяет высвободить 3—4 рабочих, автоматизированная линия высвобождает до 30, а автоматизированный участок — до 60 человек. Вот почему ныне взят курс на новую технику и технологию. Они способны коренным образом изменить материальную основу производства в металлургии — с помощью метода прямого восстановления железа, плазменной плавки, непрерывной разливки стали в машиностроении — за счет обработки взрывом, лазерной, электрохимической, применения роторной техники, матричной сборки, промышленных роботов... Этот курс подкрепляется конкретными шагами, приоритетным развитием важнейших отраслей.  [c.10]

В последние годы в связи с внедрением в производство станков с числовым программным управлением (ЧПУ) вместо чертежа детали требуется получить перфоленту, управляющую работой инструмента, на котором изготавливается эта деталь. Подготовку такой ленты называют также программированием детали. Для программного описания траектории движения инструмента используются специальные языки [63]. Однако более удобным и быстрым является применение для этой цели графического дисплея. Проектировщик выводит на экран одновременно изображения детали и инструмента. Учитывая возможные положения закрепления детали в станке и возможности движения инструмента, проектировщик начинает перемещать инструмент по обрабатываемой поверхности детали. Траектория движения инструмента, формируемая на экран дисплея проектировщиком, фиксируется ЭВМ и может выдаваться в виде управляющих программ для станков с ЧПУ.  [c.198]

При частном изменении вида выпускаемой продукции в станкостроении, текстильном, полиграфическом машиностроении и др. находят все более широкое применение машины с числовым программным управлением (ЧПУ), в которых электронная система управляет производимой операцией с помощью чисел и знаков. Программа работы машины может считываться непосредственно с чертежа или математического описания. Все промежуточные этапы при этом опускаются.  [c.11]


Все производство в цехах размещено и организовано по принципу подетальной и узловой специализации и групповых методов. В соответствии с конструктивно-, технологическими группами деталей и узлов (корпус реактора, парогенератора, компенсатора давления и др.) механическая обработка предусматривается в общем технологическом потоке изготовления с применением станков с числовым программным управлением (ЧПУ). Станочный парк с ЧПУ на заводе Атоммаш составит более 20% общего станочного парка всего завода.  [c.240]

Машиностроение в значительной мере определяет масштабы и темпы научно-технического прогресса. Дальнейшие его успехи во многом зависят от того, насколько полно будут использованы, а затем развиты те возможности, которыми технология машиностроения уже располагает. Оказать помощь широкому кругу специалистов в,ознакомлении с основными достижениями современной технологии машиностроения и призвана эта книга. В ней дан краткий обзор технологических методов и процессов, применяемых в современном машиностроительном производстве, изложены основы устройства и применения станков с числовым программным управлением, рассмотрены некоторые пути дальнейшего совершенствования технологии машиностроения.  [c.4]

Комплексная автоматизация базируется на непрерывном совершенствовании технических средств (от простейших механизмов до сложных электронных систем числового программного управления, электронных вычислительных и управляющих машин и др.) на широком использовании общности методов и средств автоматизации на различных стадиях производственного процесса на применении методов унификации. Это значительно расширяет (по сравнению с неавтоматизированным производством) вариантность возможных технических решений в конкретных условиях. Согласно расчетам автоматическая линия токарной обработки вала коробки передач автомобиля ЗИЛ может быть построена более чем по 600 технически возможным и инженерно целесообразным вариантам, сравнительная оценка и выбор которых отнюдь не очевидны. Поэтому одной из важнейших черт современного научно-технического прогресса машиностроения является развитие научных основ формирования инженерных решений при проектировании и эксплуатации машин. Все больше технологических, конструктивных, компоновочных решений должно выбираться не только с позиций обеспечения определенных кинематики и прочности или по конструктивным соображениям, но в первую очередь на основе научных исследований и эксперимента при высокой квалификации разработчиков — конструкторов и технологов. Стираются грани между проектантами и исследователями умение проводить научные исследования становится для инженера необходимостью.  [c.4]

Одним из наиболее важных вопросов числового программного управления станками является выбор способа кодирования цифровой информации. Очень важно использовать такой универсальный код, который предусматривал бы его применение в любых системах управления. Использование универсального кода тем более важно, что с ним связан вопрос о стандартизации таких узлов систем программного управления, как считывающие устройства, перфораторы, устройства для перезаписи программ на магнитную ленту и т. п. Отсутствие универсального кода приводит к тому, что на одном и том же заводе скапливается аппаратура, требующая различных программоносителей, различных перфораторов и т. п.  [c.156]

Для расширения сферы применения и создания условий для более эффективной эксплуатации станков с программным управлением разрабатывается комплекс стандартов на основные элементы систем числового программного управления.  [c.158]

Применение ЧПУ осуществляется в направлении использования обычных станков, оснащенных числовым программным управлением освоения многооперационных станков, т. е. многоцелевых обрабатывающих центров внедрения автоматических линий из станков с ЧПУ.  [c.307]

Дальнейшее совершенствование технологии изготовления деталей типа валов и шпинделей в условиях единичного и мелкосерийного производства осуществляется путем изменения способов изготовления токарных гидрокопировальных полуавтоматов и создания на их базе станков с цикловым и числовым программным управлением создания новых моделей токарных станков с ЧПУ, имеющих несколько независимых суппортов для параллельной и параллельно-последовательной работы оснащения системой цифрового показа положения суппорта универсальных токарных и токарно-винторезных станков расширения применения одношпиндельных и многошпиндельных токарных автоматов для изготовления деталей из прутка расширения применения абразивных кругов для шлифования, работающих на скоростях, равных 40—60 м/с и более, и др.  [c.310]


В инструментальной промышленности из года в год расширяется производство металлообрабатывающего инструмента и оснастки, особенно инструмента с применением природных синтетических алмазов и других сверхтвердых материалов и сплавов, а также режущего и вспомогательного инструмента к станкам с числовым программным управлением и к автоматическим линиям. Увеличивается выпуск абразивных изделий высокой стойкости. Для этого вводятся новые мощности специализированного инструментального производства. Особенно большое значение для повышения эффективности производства имеет осуществляемый в широких масштабах переход на новые инструментальные материалы,  [c.312]

В станках с числовым программным управлением получили применение оба способа перемещения исполнительных органов.  [c.157]

В СССР разработаны конструкции станков с числовым программным управлением различного назначения. Ниже приводится краткая характеристика станков, уже получивших промышленное применение.  [c.174]

Сверлильно-расточные станки с числовым программным управлением. Большинство серийных моделей сверлильно-расточных станков с числовым программным управлением имеет позиционные системы управления, обеспечивающие последовательное перемещение исполнительных органов станка для перехода от обработки одного отверстия к другому по заданной программе, без применения разметки и кондукторов. Контроль перемещений осуществляется датчиками обратной связи (система управления — замкнутая), а в ряде станков, также с помощью цифровых индикаторов, по которым можно визуально отсчитать величину перемещений.  [c.177]

Наибольший экономический эффект достигается применением станков с числовым программным управлением и автоматической сменой инструментов для концентрированной многопереходной обработки сложных корпусных деталей. Эти станки используют отдельно и в автоматических линиях.  [c.195]

Особенно большой экономический эффект дает применение системы числового программного управления на крупных расточных и карусельных станках. Затраты на системы управления по сравнению со стоимостью такого станка сравнительно невелики, а производительность труда существенно возрастает.  [c.198]

Весьма эффективно и перспективно применение в серийном производстве автоматических линий из станков с числовым программным управлением (см. главу Автоматические линии станков ). При концентрированном использовании станков с числовым программным управлением создаются предпосылки для широкого использования средств автоматизации в конструировании новых машин, проектировании технологических процессов и других звеньях производства.  [c.198]

Современные станки с числовым программным управлением используют высокоскоростные следящий или шаговый приводы. Частота управляющих импульсов, передаваемых устройствами задания траектории движения интерполятором) на устройство управления приводом, доходит до 10 кгц. Линейно-круговые интерполяторы, построенные на феррит-транзисторных элементах, не могут обеспечить частоту управляющих импульсов выше 2—3 кгц из-за низкого быстродействия самих феррит-транзисторных модулей. Поэтому применение феррит-транзисторных модулей, а также и феррит-диодных элементов в агрегатной системе программного управления существенно снизило бы возможности станка.  [c.6]

Производительность модулей при серийном выпуске увеличивают повышением концентрации операций обработки. Она достигается установкой нескольких станков, обрабатывающих деталь с нескольких сторон (крупные детали), применением многошпиндельных насадок, закрепляемых на шпинделе станка или на револьверных головках, причем обработка крупных деталей с разных сторон выполняется с помощью нескольких револьверных головок. Таким образом, развитие ГАП в серийном производстве идет так же, как развивалась автоматизация в массовом производстве,— по пути увеличения концентрации операций. В условиях ГАП особенно необходимо строить обрабатывающие центры из агрегатированных узлов, позволяющих осуществлять их перекомпоновку в случаях резкого изменения профиля заказов, и заменять узлы на запасные для последующего ремонта вне производственного участка. Наблюдается тенденция применения в переналаживаемых агрегатных станках числового программного управления, что значительно уменьшает время их переналадки. Таким образом, агрегатирование основного и вспомогательного (загрузочных поворотных столов, делительных столов для спутников и шпиндельных насадок, накопителей-транспортеров, поворотных механизмов для инструмента, кантователей, транспортных самоходных тележек, роботизированных тележек, манипуляторов и роботов) оборудования создает хорошую базу для разработки унифицированных методов и средств диагностирования типовых агрегатных сборочных единиц.  [c.131]

Единственно возможным средством для автоматизации изготовления кулачков в мелкосерийном производстве является применение систем числового программного управления.  [c.140]

Указанные свойства лазеров открывают широкие возможности их применения прежде всего в машиностроении, например, при изготовлении с очень высокой точностью гигантских станков, деталей астрономических приборов и радиотелескопов, контроле перемещений рабочих органов компараторов, координатно-измерительных машин, прецизионных металлообрабатывающих станков с числовым программным управлением и т. д. Большие перспективы использования лазерных интерферометров в станкостроении обусловлены тем, что их технические характеристики отвечают требованиям, предъявляемым современным точным станкостроением к измерительной аппаратуре увеличение диапазона и скорости контролируемых с высокой точностью перемещений, возможность автоматизации процесса измерения и получение результатов измерения в цифровой форме, удобной для оператора.  [c.229]


Область возможных и экономически целесообразных применений роботов первого поколения достаточно широка. Эти роботы успешно применяются в РТК и ГАП с программным управлением для обслуживания металлорежущего оборудования (в частности, станков с числовым программным управлением), печей, штампов, прессов, технологических линий, сварочных аппаратов, литейных машин и др. Они осуществляют установку, снятие, транспортировку, упаковку изделий, простейшие сборочные операции, сварку, ковку, литье под давлением, термическую и механическую обработку и т. д.  [c.21]

Широкое применение гидравлические следящие приводы получили в станках с числовым программным управлением, в которых они обеспечивают большую скорость подачи при обработке и большую точность выполнения программы по сравнению с силовым электрическим следящим приводом. Эти преимущества объясняются относительно малой приведенной массой гидродвигателей, возможностью непосредственного соединения их с рабочим органом, а также возможностью обеспечения большой выходной мощности при малых габаритах привода.  [c.416]

Гидравлический следящий привод широко применяется в машиностроении как эффективное средство автоматизации. В станкостроении он успешно используется в копировальных системах, работающих от жесткого шаблона, для выполнения точных делительных и установочных операций в агрегатных станках и автоматических линиях, составляет основу большинства систем числового программного управления. В колесных и гусеничных транспортных машинах применение гидравлического следящего привода позволяет обеспечить легкое управление. В самолетах и ракетах большое распространение рассматриваемые приводы получили в системах ручного и автоматического управления в форме бустеров, гидроусилителей, исполнительных устройств, автопилотов, систем наведения и др. Гидравлический следящий привод все шире применяется для автоматизации заготовительно-штамповочного и кузнечно-прессового оборудования, в специализированных испытательных стендах для осуществления высокочастотных вибрационных колебаний и во многих других машинах и оборудовании.  [c.3]

В настоящей главе проводится анализ динамики нескольких схем гидравлического следящего привода объемного управления, нашедших применение в конструкциях копировальных станков и станков с числовым программным управлением. Это главным образом приводы подач крупногабаритных станков мощностью  [c.495]

САПР является одной из применяемых в настоящее время систем автоматизации. В связи с этим ее применение сочетается с применением других автоматизированных систем измерений, эксперимента, контроля, испытаний, организационного управления (АСУ), управления технологическими процессами (АСУ ТП), обучения (АОС), диспетчерского управления, управления запасами, планирования, прогнозирования и др. В зависимости от специфики работы конкретной организации, применяющей САПР и другие системы автоматизации, эти системы объединяют в общую (интегрированную) систему автоматизации (ИСА) с общим (или частично общим) техническим и некоторыми другими обеспечениями. Наиболее тесно сопрягаются САПР с робототехникой, станками с числовым программным управлением (ЧПУ), а в настоящее время — с гибкими автоматизированными производствами (ГАП), АСУ, АСУ ТП и др., образуя интегрированную производственную систему (ИПС).  [c.189]

За последние годы достигнуты серьезные успехи в разработке и выпуске средств механизации процесса кислородной резки и прежде всего координатных портальных и портально-консольных машин с фотокопировальным и числовым программным управлением. Применение много-резаковых машин обеспечило значительное повышение уровня механизации газорезательных работ, повышение производительности труда в заготовительном производстве и экономию материалов. В настоящее время в ведущих отраслях промышленности, таких, как тяжелое, транспортное, энергетическое, химическое машиностроение, где перерабатывается наибольший объем металла, уровень механизации газорезательных работ составляет 70. .. 80 %.  [c.225]

Успехи, достигнутые в последние годы в области микроэлектроники, открыли принципиально новые возможности для осуществления высокоэффективной автоматизации производственных процессов, проектно-конструкторских и научно-исследовательских работ. Широкое внедрение мини- и микро-ЭВМ с разнообразным современным периферийным оборудованием позволило создать системы распределенной обработки информации, на основе которых строят интегрированные системы управления, получившие название гибких автоматизированных производств (ГАП). Компонентами ГАП являются САПР, АСУ ТП с использованием ЭВМ и числового программного управления, АСУ производством (АСУП) и средства промышленной робототехники. Создание таких производств связано с коренной перестройкой управления производственной технологией на основе крупномасштабной автоматизации со сквозным применением средств вычислительной техники и роботизированных средств автоматизации, включая автоматизиро-  [c.377]

САПР представляют собой человеко-машинные системы, и трудности их практического применения во многом объясняются недостаточным вниманием к вопросам организации взаимодействия человека и ЭВМ в процессе создания САПР. Как и всякое новшество, САПР на пути своего внедрения встречает сопротивление со стороны специалистов-проекти-ровщиков, корни которого в психологической инерции человека. Несмотря на существенное изменение функций проектировщика и способов решения задач в САПР, неизменным должно быть направление на создание системы, наиболее благоприятствующей работе человека. САПР, как, впрочем, и любая автоматизированная система, имеет конечной целью повышение эффективности работы человека, пусть даже за счет снижения эффективности применения другого компонента — ЭВМ. Например, чрезвычайно дорогостоящие системы машинной графики при высоком уровне автоматизации производства с применением станков с числовым программным управлением ориентированы в первую очередь на удобство работы проектировщика, привычного к графическому представлению результатов проектирования, и выполняют поэтому сервисные функции. Для ЭВМ, оперирующих цифровой информацией, графическая форма ее представления неудобна и требует больших объемов памяти, производительных процессоров и специальных программных и технических средств.  [c.281]

Прогресс в области технологии машиностроения и приборостроения характеризуется внедрением принципиально новых методов изготовления заготовок, повышающих их точность и максимально приближающих форму и размеры к форме и размерам готовых деталей (профильная прокатка, поперечно-винтовая прокатка, точная штамповка, точное литье и др.), широким применением электрических методов нагрева, электрофизических и электрохимических методов обработки, скоростного резания. Все более широкая автоматизация технологических процессов, применение переналаживаемых автоматических линий, станков с числовым программным управлением и обрабатывающих центров открывают пути к реализации решений XXV съезда КПСС о переходе к комплексной автоматизации всего производственного процесса и управления им на основе автоматических самонастраи- вающихся систем, с широким использованием средств электронно-вычислительной техники.  [c.4]


Проблему управления технологическими процессами следует расм атривать и решать в ее развитии, в связи с прогнозом технического прогресса. Решениями XXV съезда КПСС намечен в перспективе переход в массовом производстве к комплексной автоматизации всего производственного цикла и управления им на основе автоматизированных систем, сочетающих комплексы станков с числовым программным управлением с ЭВМ. Такие системы позволяют быстро осуществлять перестройку оборудования на производство новых видов изделий и обладают адаптивностью, т. е. способностью вырабатывать оптимальную технологию и режимы обработки, самонастраиваться на основе анализа, отбора, запоминания и реализации оптимальных решений. Условием применения таких систем являются разработка и внедрение новых технологических процессов, связанных с применением новых методов формообразования, максимального приближения формы и размеров заготовок к форме и размерам готовых деталей, резкого сокращения объема механической обработки и др.  [c.10]

Кузнечное производство располагает большими резервами для повышения эффективности. Важное значение имеет создание и применение нового кузнечно-штамповочного оборудования с более широкими технологическими возможностями, обеспечение соответствия конструктивных параметров технологическими быстрая установка и наладка штампов. Для повышения производительности труда в кузнечном производстве необходимо ускоренное внедрение малоотходной штамповки на кузнечных горячештамповочных прессах в штампах с открытой компенсационной полостью и противодавлением, выдавливания в штампах с горизонтальным и вертикальным разъемом, многоштучной штамповки, изотермической штамповки применение агрегатированного оборудования, средств комплексной механизации кузнечных цехов, кузнечнопрессового оборудования с числовым программным управлением автоматизация штамповочных цехов.  [c.200]

Применение станков с программным управлением становится одним из главных направлений автоматизации мелкосерийного и серийного производств, обеспечивающим повышение качества продукции и производительности труда. В соответствии с Директивами XXIV съезда КПСС в девятой пятилетке выпуск станков с числовым программным управлением увеличится в 3,5 раза, что позволит в 3—4 раза повысить производительность труда по сравнению с обработкой на универсальных станках. При хорошей организации производства станки с числовым программным управлением дают большой экономический эффект в короткие сроки,  [c.196]

Все большее распространение получают металлорежущие станки с числовым программным управлением для автоматизации мелкосерийного и опытного производства. Обладая производительностью станка-авюмата, с одной стороны, и легкостью переналадки универсального станка, с другой стороны, станки с ЧПУ незаменимы в условиях частой смены изделий. Применение металлорежущих станков с ЧПУ дает значительный экономический эффект, сокращает до 50% ручные, доводочные и разметочные работы, дает высокое качество изготавливаемых деталей (точность 3—4 классов), чистоту обработки поверхности 5—6 классов, идентичность размеров (в пределах 0,05—0,1 мм).  [c.50]

Применение данного устройства для обнаружения внезапных отказов в системах числового программного управления металлорежущими станками типа 6Н13ГЭ-2 и ФП-4С2 с пультами ПРС-ЗК позволило быстро фиксировать и обнаруживать неисправность, сократить брак продукции путем отключения системы в случае появления неисправностей.  [c.58]

Рассмотрим теперь особенности организации работ по диагностированию в условиях автоматизированного гибкоперенала-живаемого производства (рис. 12.3) с серийным и мелкосерийным выпуском продукции на примере станкостроительного завода, выпускающего ГПС. В этих условиях требования к надежности и живучести оборудования особенно возрастают, поэтому становится еще более необходимым входной контроль оборудования. Широкое применение станков и ПР с числовым программным управлением на базе микропроцессоров и с датчиками обратной связи обусловливает возможность их использования в системе диагностирования. Часть диагностической информации может храниться в центральной ЭВМ цеха. Развитие системы математического обеспечения Г АП и наличие квалифицированного инженерного персонала для его дальнейшей разработки позволяет создать более совершенные алгоритмы диагностирования и соответствующие программы. Кроме того, оснащение большей части оборудования (собственного изготовления или покупного) встроенными диагностическими системами и основным математическим обеспечением потребует лишь его доработки для конкретных условий применения оборудования.  [c.213]

Широков применение е объеиннх гидроприводах получили гидротормозные устройства с заданным законом изменения тормозного пути. Это связано с применением объемного гидропривода в станках с числовым программным управлением, в упраЕЛ ющих устройствах и т.д.  [c.124]

Описана методика исследования точности модульных головок, учитывающая специфику их применения в координатных измерительных машинах с числовым программным управлением. Приведены результаты исследования точности продольной модульной головки. Иллюстраций 3. Библ. 2 назв.  [c.223]

Эффективность применения ПР и РТК рассчитывают по инструкции ЭНИМСа . Установлено шесть уровней организации и автоматизации технологических комплексов. Уровень 1 характеризуется применением станков с числовым программным управлением, обслуживаемых рабочими-станочниками, в сочетании со специальными и универсальными станками. Станки связаны между собой в единую систему с помощью автоматизированных транспортных (АТС), транспортно-накопительных (АТНС) или транспортно-складских систем (АТСС), управляемых дистанционно с диспетчерского пункта. Планирование и управление производством осуществляется обычным способом.  [c.534]

В развитии современной измерительной техники наметились общие тенденции, из которых главными являются переход от единичных приборов к измерительным системам, в том числе к самонастраивающимся и аддаптивным системам развитие измерительных подсистем в роботехнических комплексах и совершенствование систем активного контроля применение микропроцессоров в измерительных системах и устройствах для переработки измерительной информации, применение числового программного управления процессом измерений, приведшим к созданию информационно-измерительных систем (ИИС).  [c.423]


Смотреть страницы где упоминается термин Числовое программное управление применение : [c.119]    [c.15]    [c.3]    [c.33]    [c.196]    [c.11]    [c.20]    [c.98]    [c.217]   
САПР и автоматизация производства (1987) -- [ c.165 , c.166 , c.167 , c.168 ]



ПОИСК



Общие сведения о станках с числовым программным управлением (ЧПУ), их достоинства и области рационального применения

Программные

Управление программное

Управление программное числовое



© 2025 Mash-xxl.info Реклама на сайте