Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приборы астрономические

Некоторые категории оптических приборов (астрономические н астрофотографические объективы) из-за своих значительных фокусных расстоянии очень чувствительны к хроматической аберрации, вследствие чего при определении допустимых отклонений  [c.499]

Методы расчета выбираются в зависимости от условий работы конструкции и требований, которые к ней предъявляются. Если необходимо добиться наименьших изменений формы конструкции, например при проектировании отражателя прожектора или системы зеркал астрономического прибора, производится расчет по допускаемым перемещениям, или, как говорят, расчет на жесткость. Это не исключает, попятно, одновременной проверки системы на прочность по напряжениям.  [c.28]


Для решения своих проблем кинетика принимает без математического доказательства в качестве аксиом некоторые основные законы движения. Математических доказательств этих законов не существует, хотя законы эти настолько просты, что кажутся очевидными. Под аксиомами механики мы не будем понимать какие-то непреложные и настолько очевидные истины, что даже доказательства их совершенно излишни. Они представляют собой результат обобщения выводов, полученных из многолетних и многочисленных опытов и наблюдений над движением и покоем тел. У нас нет возможности проверить их непосредственно и мы располагаем лишь косвенными доказательствами. Мы видим, что следствия, вытекающие из этих аксиом, подтверждаются наблюдениями сооружения, построенные на основании законов механики, прочны, машины работают, приборы и аппараты действуют, корабли плавают, самолеты летают, запущенные нами космические корабли выходят на предписанные им орбиты, а затмения Солнца и Луны происходят в точности так, как это было заранее предсказано. Все это является доказательством правильности всех положений механики (в частности ее аксиом), на основе которых были рассчитаны эти сооружения, сконструированы машины и произведены астрономические вычисления, потому что верные практические результаты могут быть получены только из правильных предпосылок.  [c.99]

Приборы первых трех подгрупп — микроскопы, астрономические и геодезические приборы в рассматриваемый период были значительно усовершенствованы, стали более разнообразными.  [c.361]

Указанные свойства лазеров открывают широкие возможности их применения прежде всего в машиностроении, например, при изготовлении с очень высокой точностью гигантских станков, деталей астрономических приборов и радиотелескопов, контроле перемещений рабочих органов компараторов, координатно-измерительных машин, прецизионных металлообрабатывающих станков с числовым программным управлением и т. д. Большие перспективы использования лазерных интерферометров в станкостроении обусловлены тем, что их технические характеристики отвечают требованиям, предъявляемым современным точным станкостроением к измерительной аппаратуре увеличение диапазона и скорости контролируемых с высокой точностью перемещений, возможность автоматизации процесса измерения и получение результатов измерения в цифровой форме, удобной для оператора.  [c.229]

С плотность 12,5. В соединениях большей частью трехвалентен. Переходит в растворимые соединения при сплавлении со щелочами. Родиевая чернь является катализатором ряда органических реакций. Металлический родий используется для изготовления зеркал и рефлекторов, деталей астрономических и астрофизических приборов. Сплав родня с платиной используется в термопарах для измерения высоких температур.  [c.386]


Примерами кинематических точных передач являются мелкомодульные отсчетные зубчатые передачи (индикаторные) астрономические телескопы механические делительные головки навигационные приборы (секстанты, октанты) сменные колеса делительных цепей металлорежущих станков.  [c.111]

Приборы ДЗЗ, устанавливаемые на спутнике, используются как для наблюдения атмосферы, так и в интересах астрономических приложений.  [c.265]

Из С. к. изготовляют тонкие нити, а также подшипники и подпятники, необходимые для точных приборов, различные эталоны, зеркала для прожекторов и астрономических приборов, иллюминаторы для глубоководных приборов и высотных аппаратов.  [c.256]

Упомянем еще об одном аналогичном вопросе — об астрономическом мерцании флуктуации показателя преломления земной атмосферы вызывают появление флуктуаций оптического пути лучей и производят случайные колебания интенсивности изображений, известных под названием мерцаний . Когда флуктуации оптического пути малы, их можно представить в виде ряда, сохранив величины первого порядка. Единственное серьезное отличие от предыдущего случая состоит в том, что оптический прибор сфокусирован на бесконечность, тогда как та область, где возникают возмущения, не совпадает со зрачком, а расположена на конечном расстоянии от него. Ар-сак показал, что это равносильно фильтрованию частот пространства. На это фильтрование накладывается еще два других. С одной стороны, наблюдаемое светило имеет отличный от нуля кажущийся диаметр — известно, что в видимой области спектра планеты не мерцают в оптике коротких радиоволн (например, с длиной волны 3 см) критический диаметр составляет величину, равную нескольким секундам дуги, и может сказываться на практике (солнечные пятна). С другой стороны, оптический прибор создает некоторое дифракционное пятно, и мерцание уменьшается обратно пропорционально отверстию прибора. Полный расчет явления мерцания интенсивности требует рассмотрения всех этих факторов. Практический результат расчета приводит к тому, что роль атмосферы в объяснении этого явления настолько искажается другими причинами, что изучение мерцаний приносит очень мало сведений о неоднородностях атмосферы,  [c.266]

На рис. 47 приведена кривая для системы, у которой одновременно с исправлением хроматизма для линий С и F устранен вторичный спектр для линии D (апохроматическая коррекция). Изображения для этих цветов расположены в одной плоскости. Оптические системы, в которых устранен хроматизм положения для двух цветов (например, С и F), называются ахроматическими. Апохроматическую коррекцию имеют астрономические приборы, некоторые микрообъективы и репродукционные объективы для цветной фотографии, геодезические зрительные трубы и другие системы, где требуется большое увеличение.  [c.158]

Сферические и асферические зеркала (параболические, гиперболические, эллиптические), внеосевые с внешней и с задней отражающими поверхностями применяются для объективов астрономических приборов, объективов микроскопов, телеобъективов фотоаппаратов, для прожекторов и различных осветительных устройств.  [c.225]

Допуск на поперечный и продольный хроматизм можно также задать в волновой мере. В самых ответственных случаях, например для деталей астрономических приборов, принимают, что в пределах рабо-  [c.404]

Силовые деформации деталей. Причинами этих деформаций являются силы тяжести деталей, внешние (нагрузочные) силы, силы трения, усилия, возникающие в сборке при статически неопределенной конструкции. Наибольшее влияние на точность механизмов оказывают обычно дефор мации от внешних сил, однако в приборах, имеющих массивные конструкции (например, астрономических), имеют большое значение и деформации от сил тяжести деталей.  [c.435]

Конические цапфы применяются довольно редко, преимущественно в геодезических и астрономических приборах, а также в микроскопах (револьвер для смены объективов, предметный столик, угломерный окуляр (рис. 22 и 23). Опоры с двумя коническими цапфами (опоры на центрах, рис. 24) применяются для легких деталей с точной центрировкой. Рабочие поверхности винта следует калить до твердости HR 55—60.  [c.494]

При креплении крупногабаритных зеркал астрономических приборов деформация отражающей поверхности от собственного веса стекла при установке на три точки достигает величин, при которых работа зеркала становится невозможной. Поэтому в таких конструкциях число опор в направлениях действия силы тяжести увеличи-  [c.357]


В соответствии с этим наглазники делятся на жесткие и мягкие. Жесткие наглазники применяются в лабораторных приборах, биноклях, астрономических, геодезических и других приборах, не испытывающих толчков.  [c.415]

Конические цапфы применяются довольно редко, преимущественно в геодезических и астрономических приборах, а также в микроскопах (револьвер для смены объективов,  [c.507]

Особенности спектра потока событий. Следует особо подчеркнуть, что в ядерной физике нередко степень приближения экспериментальной кривой спектра к вероятностному закону распределения практически не зависит от количества зарегистрированных индивидуальных событий, например частиц. Это справедливо, когда исследуемые частицы воспринимаются датчиком или другим прибором не индивидуально, а как непрерывный поток. Основной его характеристикой будет уже не абсолютное количество или средняя частота регистрации частиц, а их интенсивность или ток (по существу ток также представляет среднюю частоту, но измерена она не в количестве индивидуальных частиц, а в количестве наполнений этими частицами некоторой условной мензурки, в которую входят обычно астрономические количества таких частиц). Следовательно, при любой минимальной величине такого потока он состоит практически из бесконечного количества исследуемых событий (фотонов — при классических оптических измерениях, электронов — при обычных электрических измерениях напряжения и тока и т. п.). В этих случаях статистическая погрешность в любой точке кривой распределения практически отсутствует и все отличие этой кривой от идеальной функции распределения вызывается только погрешностями, связанными с ограниченностью разрешающей способности и разрешающего времени спектрометрического устройства (определение этих понятий будет приведено ниже).  [c.11]

Так, для объективов астрономических труб, где источником служат точки, расположенные вблизи оси, важно соблюдение условий синусов и устранение с( )ерической и хроматическй аберраций для точек в центре поля для микрообъективов и ( )отообъективов, предназначенных для (фотографирования щирокого поля зрения, необходимо, кроме соблюдения условия синусов, устранение аберраций, искажающих поле (дисторсия, искривление поля и т. д.), а также хроматической аберрации. Объективы, предназначенные для наблюдения объектов малой яркости, должны иметь возможно большее относительное отверстие, и это вынуждает мириться с некоторыми аберрациями, неизбежными при работе с очень широкими пучками. Исправление хроматизма в приборах, предназначенных для визуальных наблюдений и для фотографии, рассчитано на разные спектральные области применительно к тому обстоятельству, что максимум чувствительности глаза лежит в желто-зеленой части спектра, а чувствительность фотопластинок обычно сдвинута в более коротковолновую область. Объектив коллиматора спектрального аппарата должен быть очень хорошо исправлен на хроматическую аберрацию, тогда как объектив камеры может быть совсем не ахроматизован, но в нем весьма вредны астигматизм наклонных пучков и кома впрочем обычно оптика спектрографа рассчитывается как целое, так что недостаток одной ее части в большей или меньшей степени компенсируется за счет другой части.  [c.318]

Заглавия этих работ показывают, что Гамильтон непосредственно изучал и сам разрабатывал теорию оптических приборов. Долголетняя работа в качестве астроно.ма Ирландии и руководителя Дублинской астрономической обсерватории непосредственно толкала Гамильтона к таким проблемам. В силу же особенностей его таланта деятельность его направлялась не по линии конструктивно-экспериментальной, а по линии теоретико-математической разработки тех или иных оптических проблем, непосредственно или в конечном счете имевших важное практическое значение. Что Гамильтон имел в виду практические интересы, видно из того, какие лучи рассматриваются им в его основной оптической работе Теория систем лучей . Клейн говорит по этому поводу Гамильтон первоначально исходил в своих исследованиях систем лучей из практических запросов оптического приборостроения. Поэтому он рассматривал только такие световые волны,, которые исходят из отдельных точек ).  [c.809]

Производство оптических инструментов (луп, окуляров и пр.), приборов (микроскопов, фотокинопроекционной аппаратуры и пр.). оптико-технических устройств (рефлекторов, отражателей и пр.) и астрономических приборов  [c.440]

Для объективов больших габаритов (коллиматоров и астрономических приборов) используются стекла К8, Ф1, ТК16, а для сложных фотообъективов и окуляров — разные марки, обеспечивающие заданное качество изображения.  [c.512]

К первой четверти XX в. количество и разнообразие точных приборов значительно возросло. Большинство из них относится к различным группам современного приборостроения [29,0.29—37]. Одну из ведущих групп в приборостроении занимают оптико-механические приборы, в которую входят 1. Микроскопы. 2. Астрономические приборы. 3. Геодезические приборы. 4. Астрофизические приборы. 5. Спектрометрические приборы. 6. Спектрографические приборы. 7. Фотометрические приборы. 8. Калориметрические приборы. 9. Поляризационные приборы. 10. Интерференционные приборы. 11. Аэрофотометрические приборы. 12. Фотограмметрические приборы. 13. Фотооптическая регистрирующая аппаратура. 14. Киноаппаратура. 15. Специальные приборы для фотокинопромышленности. 16. Офтальмологические приборы. 17. Электрооптические приборы. 18. Рефрактометрические приборы. 19. Оптико-измерительные приборы. 20. Специальные приборы для оптического производства. 21. Приборы для определения качества поверхностей.  [c.361]

С 1895 г. почти 13 лет работал в Пулковской обсерватории Г. А. Фрейберг-Кондратьев он изготовлял малые универсальные инструменты, переносные вертикальные круги, переносные зепит-телескопы с прямыми и ломаными трубами, зрительные трубы с параллактическими установками, пассажные инструменты, малые теодолиты. В начале XX столетия Фрейберг-Кондратьев изготовил для Пулковской обсерватории большой зенит-телескоп, о котором в 1945 г. в юбилейном сборнике, посвященном 100-летию обсерватории, говорилось, что он оказался первоклассным астрономическим инструментом и до настоящего времени может считаться одним из лучших экземпляров визуальных зенит-телескопов [96]. С переходом Фрейберга-Кондратьева в Морское министерство производство высокоточных астрономических и геодезических приборов в Пулкове прекратилось.  [c.400]


Больших успехов достигли ленинградцы в конструировании и изготовлении еложнейших оптико-механичееких приборов. Оптико-механическим объединением изготовлен зеркально-линзовый телескоп АЗТ-15 для фотографирования астрономических протяженных объектов, а также для епектрографических работ.  [c.21]

Для этого исследования можно использовать установку, обшпн вид которой приведен на рис. 247. К вершей части штатива о привинчена металлическая прямоугольная пластина 5. С одной стороны этой пластины имеется втулка 3 с винтом. Внутри втулки при помощи кремальеры может перемещаться в вертикальном направлении цилиндр с мнкроскоподержателем. К верхнему концу цилиндра прикреплены салазки 2, служащие для перемещения в поперечном направлении каретки микроскоподержателя вместе с микроскоп-микрометром 4, являющимся главной частью данного прибора. Микроскоп-микрометр имеет барабан 1, разделенный на 100 частей, с цифрами около каждого 10-го деления. На другом конце прямоугольной пластины укреплены вторые салазки 7 с вилкой, которые служат для исследований окулярных микрометров геодезических и астрономических инструментов. Для исследований винтов экзаменаторов эти детали не нужны, и перед исследованием винтов их нужно снять с установки.  [c.336]

Нужно ли говорить, что успешная разработка динамики в XVII в., в частности в трудах Ньютона, была бы невозможна без астрономических наблюдений, сыгравших в становлении новой механики не меньшую (если не большую) роль, чем земные эксперименты, зачастую неточные из-за отсутствия хорошей экспериментальной базы и точных приборов. Наблюдения Тихо Браге послужили отправной точкой для Кеплера при открытии законов движения планет, носящих его имя, а эти последние не только получили свое объяснение в трудах Ньютона, но и явились одним из важных эмпирических подтверждений правильности теоретических выводов великого английского ученого. В дальнейшем мы несколько подробнее коснемся того, как, наоборот, неточные эмпирические данные затормозили на время ход теоретической мысли Ньютона, которая получила новый стимул лишь после точных градусных измерений Пикара.  [c.117]

Какие особые метрологические характеристики устанавливаются для приборов времени - бытовьк часов и часов прецизионных (астрономических, морских хронометров и др.)  [c.96]

Следует учесть, что, как правило, двухлинзовые несклеенные объективы применяются для точных оптических приборов (кол-лимЬторы, астрономические и геодезические трубы с сравнительно  [c.74]

Подставляя в формулы (IV.14) вместо S , 5 i и Sin равноценные им значения из табл. IV. 1, получаем табл. IV. 11, в которой 5j = 5ц =Sjii =0- Значения коррекционных параметров н Рз здесь значительно меньше, чем в рассмотренном ранее случае, но коэффициент дисторсни растет. Все же системы этого типа могут найти применение в астрономических приборах с углами поля, ие превышающими несколько градусов.  [c.340]

Рассмотренные выше системы имеют мнимое промежуточное изображение (по терминологии, принятой для астрономических приборов, это предфокальные системы [6]). Возможны также и такие конфигурации [зафокальные системы (рис. 5.8)], в которых промежуточное изображение является дей-  [c.167]

ГИРОВЕРТИКАЛЬ — гироскопический прибор для гшределения угла наклона (крена) судна, летательного аппарата, астрономического инструмента и т. п. Простейшей Г. является гироскопический маятник (сх. а). Центр ротора 1 в нем смещен вдоль его оси и не совпадает с центром О наружной рамки 3. В физическом маятнике (без вращающегося рот-ора) положение рамки 2 определяется не только направлением силы тяжести, но и направлением ускорения движения объекта на котором он установлен. В Г. одновременно используется способность физического маятника различать направление истинной вертикали при уста-  [c.61]

Прибором, принципиально пригоднь1м ддя этой цели, является интерферометр Рэлея (рис. 118, а). Из плоской волны, идущей от отдаленной звезды, в Аг и Аг выделяются два параллельных пучка света, которые, выйдя из прибора, дают в фокальной плоскости Р линзы Ь дифракционную картину, позволяющую измерить угловой размф источника. Однако применить йнтерферометр Рэлея для измерения угловых размеров астрономических объектов оказалось невозможным. Интер- ференционные полосы получаются очень узкими и проводить измерение трудно. Большие осложнения также связаны с обеспечением точности взаимного положения трубок на больших расстояниях между ними.  [c.167]


Смотреть страницы где упоминается термин Приборы астрономические : [c.19]    [c.336]    [c.400]    [c.287]    [c.86]    [c.5]    [c.5]    [c.52]    [c.18]    [c.335]    [c.391]    [c.380]    [c.425]   
Техника в ее историческом развитии (1982) -- [ c.351 , c.400 , c.401 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте