Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Характеристики состояния пластических тел физические

Характеристики состояния пластических тел физические 422  [c.568]

Принятые в дисциплине сопротивление материалов пластическому деформированию методы постановки задач существенно отличаются от таковых в теории упругости и теории малых упругопластических деформаций. Так, при анализе малых упругих или упруго-пластических деформаций основная задача, как известно, состоит в том, чтобы определить напряженно-деформированное состояние данного физического тела, форма, размеры и механические характеристики которого заранее известны, под действием заданной системы внешних сил. В этих задачах незначительные изменения формы и размеров рассматриваемого тела являются искомыми величинами, а внешние силы, под действием которых происходят эти изменения, являются заданными, заранее известными величинами.  [c.189]


Циклическая вязкость разрушения К с—коэффициент интенсивности напряжений — в условиях плоской деформации в начале нестабильного роста трещины принята за показатель стойкости материала против хрупкого разрушения. Эта величина служит сравнительной характеристикой и может быть использована для расчетов с целью установления критических нагрузок и длин (глубин) трещин. С физической точки зрения К с отражает перераспределение напряжений в материале образца вследствие образования усталостной трещины, характеризуя величину усилий, передающихся через область у ее вершины. Циклическая вязкость разрушения, определяющая предельное состояние металла, является функцией межатомной связи и размера пластической деформации у вершины усталостной трещины критической длины.  [c.111]

В настоящее время определяющих уравнений состояния, позволяющих описать реологическое поведение материалов с учетом режима нагружения, нет, поэтому для выполнения расчетов используются упрощенные модели материала [153, 225, 323], неотражающие всей сложности поведения материала в процессе-деформации и, следовательно, применимые для ограниченного диапазона условий нагружения. Успехи в построении уравнений состояния на основе физических механизмов пластической деформации, например на основе дислокационной модели пластического течения [74, 175, 309], имеют ограниченное значение. Зависимость сопротивления деформации от мгновенных условий нагружения (температура, скорость деформации и др.) и всей истории предшествующего нагружения, которая определяет изменение в процессе деформирования большого числа параметров, характеризующих микро- и макроструктуру материала, за исключением некоторых частных случаев, не позволяет в настоящее время дать количественную оценку инженерных характеристик сопротивления материала.  [c.15]

Существенное различие химического состава между нихромами и Fe-Сг-А1 сплавами сопротивления определяет необходимость создания отличных технологических процессов. Специфика производства сплавов на Fe- r-Al основе связана с их механическими и физическими свойствами. Низкие пластические характеристики в холодном состоянии, особенно в литом состоянии или в крупных поковках, вызывают необходимость тщательной отработки и строгого соблюдения технологии выплавки и горячей деформации.  [c.125]


ТЕОРИЯ ПЛАСТИЧНОСТИ А. А. ИЛЬЮШИНА. Во многих теориях пластичности, таких как деформационная теория пластичности и теория вязко-пластического течения, между напряжениями, деформациями и скоростями деформаций устанавливаются конечные, функциональные зависимости. Более глубокий анализ свидетельствует о том, что напряженное состояние в исследуемом элементе- объема определяется, вообще говоря, характеристиками всего предшествующего процесса изменения компонент тензора деформации, скорости деформации и внешних физических параметров, а не их текущими значениями. Это означает, что как деформационная теория пластичности, так и теория вязкопластического течения должны вытекать из более общей теории как некоторые упрощенные варианты, справедливые для определенных. классов процессов нагру жения. I  [c.131]

Возникновение науки о механических свойствах в начале XX века базировалось на осредненных и статических представлениях, что каждой величине напряжения соответствует определенная величина деформации. При этом по аналогии с другими физическими свойствами предполагалось, что механические свойства материала могут быть измерены в чистом виде , как некоторые константы данного материала наподобие его плотности, параметров кристаллической решетки, коэффициента теплового расширения и т. п. Исходя из этих предположений, был получен ряд важных результатов опытное построение и применение в расчетах обобщенной кривой Людвика, лежащей в основе многих положений математической теории пластичности измерение сопротивления отрыву и его применение для различных схем перехода из хрупкого в пластическое состояние (Людвик, Иоффе, Давиденков, диаграммы механического состояния) и др. Однако дальнейшее более глубокое изучение показало ограниченную справедливость (а в ряде случаев и ошибочность) подобных представлений. Это, в частности, привело к понятию структурной чувствительности многих механических характеристик.  [c.15]

В металлах, используемых обычно в качестве материалов для конструкций, мельчайшие частицы, которые допустимо считать однородными (кристаллические зерна), отличаются в огромном большинстве случаев весьма малыми размерами по сравнению с размерами элементов конструкций. Средний диаметр этих зерен представляет собой величину порядка самое большее нескольких миллиметров, обычно же он составляет всего лишь от 0,1 до 0,01 мм. Для сравнения укажем, что расстояния между атомными частицами в кристаллической решетке измеряются величинами порядка 10 см. Изучение тонкой кристаллической структуры металлов и их сплавов при помощи оптического и электронного микроскопов позволило получить важные сведения относительно влияния структуры на прочностные характеристики металлов, а также обнаружить видимые изменения в зернистой структуре, сопровождающие пластическую деформацию твердых металлов или вызывающие их разрушение. Металл с весьма мелкозернистой структурой обладает обычно большей прочностью, чем тот же металл со структурой крупнозернистой. Так как размер зерна и состояние кристаллической структуры находятся в тесной зависимости от технологии и подвергаются резким изменениям под воздействием механической и термической обработки металла, то очевидно, что эти металлургические факторы оказывают большое влияние на свойства, определяющие механическую прочность металлов. Поскольку, однако, эти факторы не поддаются анализу на основе законов механики, они здесь не рассматриваются, и для ознакомления с ними следует обратиться к курсам физической металлургии ). В дальнейшем о них будет сказано лишь очень кратко.  [c.56]

Характеристики механического контакта при нормальном и патологических условиях трения существенно отличны. Коренным образом изменяется характер контакта при статическом нагружении и трении движения. При изменении условий нагружения механический контакт и упруго-пластическая деформация, возникающая при этом, могут вызвать существенно различные производные явления физические, химические, электрические и их сочетания. Эта сторона явлений, возникающих на контакте, изучена мало. Главное внимание в работах, посвященных теории контакта твердых тел, уделялось вопросам напряженного состояния и геометрии поверхностей [13].  [c.85]


Технические металлы и сплавы, исследованные электрохимически и включенные в таблицы коррозионной стойкости, часто считаются гомогенными материалами. Это, возможно, правильно для чистых алюминия, меди, железа и т. д., но абсолютно неприемлемо для стали, латуни, алюминиевых сплавов и других структурных материалов. Для полной характеристики таких материалов должен быть известен не только их состав, но также металлургическая история — пластическая обработка в горячем или холодном состоянии, термообработка и т. д. Это относится и к нержавеющим сталям, которые образуют несколько групп и подгрупп, обладающих каждая своими специфическими металлургическими, физическими и химическими свойствами.  [c.22]

Наиболее ярко физические особенности процесса резания проявляются при сверхвысокой скорости. При скоростях резания, составляющих примерно несколько сотен метров в секунду, возникают предельные условия для перехода материала из одного состояния в другое, резко изменяются физические характеристики и механические свойства. При исследованиях отожженной стали, проводимых на специальном ротационном копре, было установлено, что пластическая деформация отожженной стали (0,2 % С) прекращается при скорости около 50 м/с [18]. Понятия хрупкость и пластичность условны чем выше скорость нагружения.  [c.20]

Технологическая деформируемость включает понятия штампуемость и допустимое формоизменение . Штампуемость — сравнительная обобщенная характеристика, отражающая возможность пластической обработки металла до требуемой степени деформации. Штампуемость зависит от качества и физического состояния металла, а именно химического состава, характеристик прочности, пластичности, анизотропии, размеров зерна и структурного состояния, объема неметаллических включений, склонности металла к деформационному старению, микрогеометрии поверхности листового проката, наличия внешних и внутренних дефектов и пр.  [c.18]

Несмотря на одинаковое математическое выражение физическое существо двух указанных трактовок совершенно различно в первом случае поверхности зоны ослабленных связей есть атомные плоскости, во втором — границы пластической зоны. Следовательно, в нервом случае материал между поверхностями дополнительного разреза отсутствует, а во втором случае этот промежуток заполнен сплошной средой, находящейся в состоянии пластического течения. Естественно, что и характеристика материала бк в этих случаях имеет как принципиальное, так и количественное различие. Это различие подчеркивается другим обозначением критического раскрытия в вершине трегципы за счет пластической деформации, а именно вместо 6 пишут бс.  [c.56]

В первом случае автономная система стремится сохранить свое первоначальное состояние за счет направленного изменения физических параметров процесса без учета электрических н мехапических характеристик. сварочных машин. Так при точечной сварке самопроизвольное увеличение сварочного тока, связанное с гойышением напряжения питающей сети, вызывает uepei рев свариваемого металла, что приводит к росту температуры в зоне сварки, снижению сопро-тивлеиия пластической деформации, увеличению размеров контактов, снижепиго плотности тока я соответственно температуры и размеров соединений (диаметра ядра) до значений, близким к первоначальным по следующей схеме  [c.112]

Рассматривая ползучесть как некоторый вид квазивязкого течения металла, мы должны допустить, что в каждый момент скорость ползучести при данном структурном состоянии определяется однозначно действующим напряжением и температурой. Структурное состояние — это термин, чуждый по существу механике, поэтому применение его в данном контексте должно быть пояснено более детально. Понятие о структурном состоянии связано с теми или иньгаи физическими методами фиксации этого состояния — металлографическими наблюдениями, рентгеноструктурным анализом, измерением электрической проводимости и т. д. Обычно физические методы дают лишь качественную характеристику структуры, выражающуюся, например, в словесном описании картины, наблюдаемой на микрофотографии шлифа. Иногда эта характеристика может быть выражена числом, но это число бывает затруднительно ввести в механические определяющие уравнения. В современной физической литературе, относящейся к описанию процессов пластической деформации и особенно ползучести, в качестве структурного параметра, характеризующего, например, степень упрочнения материала, принимается плотность дислокаций. Понятие плотности дислокаций нуждается в некотором пояснении. Линейная дислокация характеризуется совокупностью двух векторов — направленного вдоль оси дислокации и вектора Бюргерса. Можно заменить приближенно распределение большого числа близко расположенных дискретных дислокаций их непрерывным распределением и определить, таким образом, плотность дислокаций, которая представляет собою тензор. Экспериментальных методов для измерения тензора плотности дислокаций не существует. Однако некоторую относительную оценку можно получить, например, путем подсчета так называемых ямок травления. Когда линия дислокации выходит на поверхность, в окрестности точек выхода имеется концентрация напряжений. При травлении реактивами поверхности кристалла окрестность точки выхода дислокаций растравливается более интенсивно, около этой точки образуется ямка. Таким образом, определяется некоторая скалярная мера плотности дислокаций, которая вводится в определяюпще уравнения как структурный параметр. Условность такого приема очевидна.  [c.619]


По своим одноимеппым характеристикам физических свойств приведенные стали имеют небольшие различия ири их одинаковом структурном состоянии, т. е, при одинаковом виде термической обработки. Так, например, плотность в зависимости от химического состава стали при комнатной температуре составляет 7,7—7,86 г/см . При повышении температуры плотность стали уменьшается, а при понижении — увеличивается в связи с изменением параметра решетки и температурного коэффициента термического расширения (КТР). Холодная пластическая деформация, закалка уменьшают плотность стали, а последующий рекристаллизационный отжиг после холодной пластической деформации или отпуск после закалки увеличивает плотность стали.  [c.7]

Имеющиеся в титане системы скольжения неравноценны между собой на монокристаллах критическое напряжение сдвига по плоскости призмы равно 5 кгс/мм , а по плоскости базиса — 11 кгс/мм. В мелкозернистых поликристаллических образцах обе указанные характеристики повышаются, а различие между ними уменьшается. Тем не менее, различные плоскости скольжения, по-видимому, неодновременно активизируются при нагружении и исчерпываются по мере деформирования. В результате этого деформационное (физическое) упрочнение у титана меньше, чем уОЦК- и ГЦК-металлов, машр лная диаграмма растяжения имеет более пологий характер, а шейка разрывных образцов менее локализована. В крупнозернистых образцах, особенно когда диаметр образца соизмерим с размерами зерен, сопротивление малым пластическим деформациям ((Год существенно снижается. Из табл. 11 видно, что в весьма крупнозернистом (литом или перегретом) состоянии  [c.43]

Линеаризованные физически нелинейные задачи для гладких и ребристых оболочек. Учет приобретенной анизотропии на примере линеарнзапни физически нелинейных задач теории малых упруго-пластических деформаций при использовании метода переменных параметров упругости рассмотрен в [П. 3]. В этом случае связь между компонентами усилий и деформаций для гладких и ребристых оболочек можно представить в форме (I 20) гл. 4 Д.ЧЯ неоднородных анизотропных оболочек. В этих уравнениях коэффициенты упругости являются функциями напряженно-деформированного состояния. Прн решении данной нелинейной задачи методом переменных параметров упругости физические соотношения на каждом шаге линеаризации сохраняют форму (1.20) с постоянными коэффициентами упругости. Часть коэффициентов в эти.х соотношениях обращается в нуль, а вид других зависит от интегральных физических характеристик сечения (например, [П. 6]). Уравнения равновесия и геометрические завнснмостн, естественно, остаются одинаковыми для теории малых упруго-пластических деформаций н линейной теории неоднородных анизотропных оболочек.  [c.219]

Зависимости напряжейий от характера деформирования материала за пределом упругости являются намного более сложными, чем в области упругих деформаций. Характеристики поведения материалов при пластическом деформировании, как впрочем и любые данные о теплофизических свойствах материалов, либо измеряются в экспериментах, либо получаются с помощью физических теорий пластичности. Точно так же, как и в случае уравнений состояния, экспериментальные и теоретические данные используются при построении математических теорий пластичности. Эти теории опираются в основном на гипотезы и предположения феноменологического характера. Их характерной чертой является математическая простота, необходимая для проведения расчетов и качественного анализа поведения конструкций. Математические теории пластичности можно разделить на два вида теории упругопластических деформаций и теории пластического течения. Первые являются обобщением теории упругости и опираются на уравнения, определяющие связь между напряжениями и деформациями. Вторые опираются на уравнения, связывающие напряжения со скоростями деформаций. Многочисленные экспериментальные данные показывают, что уравнения упругопластического деформирования должны содержать напряжения, деформации и скорости деформаций [31, 32]. С позиций такого подхода теории упругопластических деформаций и теории пластического течения должны рассматриваться как асимптотические теории, справедливые в случаях, когда одно из свойств материала пренебрежимо мало по сравнению с другими.  [c.73]

История изменения напряжения, температуры, пластической деформации и деформации ползучести в течение цикла может быть весьма разнообразна. Для отражения ее влияния на число циклов до разрушения внешних параметров цикла (например размаха деформации) оказывается в обш ем случае недостаточно. Здесь физически более оправданными представляются феноменологические модели другого типа в них рассматривается эволюция параметра повреждаемости (кинетика накопления повреждений) в течение каждого цикла в зависимости от те-куш их значений параметров состояния. Однако при этом сразу же возникают серьезные трудности обычные параметры состояния (напряжение, параметр Удквиста) не позволяют объяснить даже известную эмпирическую формулу Коффина, относяп] ую-ся к испытаниям простейшего типа. Это препятствие удается преодолеть при использовании структурной модели, выявившей два новых параметра состояния, связанных именно с циклическим деформированием. В принципе подобия (см. разд. А5.3) этими параметрами определяется текуш ая скорость неупругого деформирования в цикле. Их можно интерпретировать как относительное число вошедших в неупругое деформирование состав-ляюш их микрообъемов среды и их относительную нагружен-ность. Эти характеристики достаточно просто отражаются в макроскопических величинах С = /%/е характеризует первый параметр, 0(/-, 8>., 9у) — второй.  [c.220]

Непосредственное перенесение расчетных методов механики си. юшиых сред (теории упругости и пластичности) на разрушение затруднено, хотя такие попытки п предпринимаются [27, 28, 42, 46, 76, 81]. Так же. как. тля упругого, пластического, вязкого и высокоэластического состояний, основное инженерное значение и для характеристик разрун1ения остается по-прежнему за средни П1 (интегральными) величинами напряжением, деформацией и вре. енем процесса, между тем как физические закономерности определяются в значительной мере микроскопическими и субмикроскопическими величинами и потому одна нз задач теории разрушения заключается в устаповленпп связи средних ве.шчин напряжения, деформации и т. п. с микроскопическими процесса.ми. Принято считать, что трещина передает только сжимающие и не передает растягивающие напряжения [()6], а при достаточном ее раскрытии не передает и касательные напряжения. Силовой поток, перерезанный трещиной, как бы обтекает ее и вызывает концентрацию напряжений и деформаций в зонах, расположенных вблизи концов трещины (рис. 4.2) [65].  [c.175]

У малопластичных металлов и сплавов корреляция НВ и 0в может отсутствовать высокой твердости часто сопутствует низкий предел прочности. Это вполне естественно, если учесть совершенно разный физический смысл этих характеристик для хрупких материалов. Предел прочности таких материалов близок к инстинному сопротивлению разрушению, а НВ остается критерием соиро-тивляемости значительной пластической деформации в условиях более мягкой схемы напряженного состояния,  [c.230]


Физическая сущность формирования ПС с неоднородными свойствами обусловлена специфическими особенностями развития пластических деформаций и температур в зоне резания, их вероятностным характером из-за существенного влияршя случайных факторов. При пластической деформации формируются локальные очаги с повышенной плотностью дислокаций, которые являются потенциальными источниками зарождения трещин, неоднородно распределяемых в зоне разрушения. Случайный характер расположения зерен металла, направлений их кристаллографических плоскостей, распределения дефектов кристаллов и их скоплений, которые также могут служить источниками зарождения трещин или барьерами их распространения, усложняют картину физических процессов в зоне резания и формирования ПС. Поэтому даже при практически постоянных параметрах режимов резания и режущего инструмента характеристики микрорельефа обработанной поверхности, деформационного упрочнения (глубина и степень наклепа), напряженное состояние ПС будут случайными величинами. Положение точки раздела материала, уходящего со стружкой и деталью, ограничено положением очага разрушения возле режущей кромки, имеющей радиус округления. Чем больше очаг разрушения, тем выше вероятность того, что будут возрастать колебания толщины деформированного слоя и характеристик субструктуры упрочнения, т.е. формирование ПС детали с нестабильными свойствами.  [c.110]

Классификация физического состояния поверхностного слоя, приведенная в табл. 2.4, учитывает лишь параметры, связанные с резанием. В процессе резания происходит пластическое деформирование металла, сопровождающееся выделением тепла, В результате образуется поверхностный слой, степень деформации которого, деформационное упрочнение (наклеп), еубструктура (размеры блоков и их разорнентировка), кристаллическая структура (плотмость дислокаций, концентрация вакансий) существенно отличаются от аналогичных характеристик всего объема металла. В деформированном поверхностном слое, как правило, возрастают характеристики сопротивления деформированию и разрушению — пределы упругости, текучести, прочности, сни-  [c.142]


Смотреть страницы где упоминается термин Характеристики состояния пластических тел физические : [c.422]    [c.154]    [c.205]    [c.130]   
Механика сплошной среды. Т.2 (1970) -- [ c.422 ]



ПОИСК



Состояние пластическое

Физические характеристики

Физическое состояние

Характеристики состояния

Характеристики состояния пластических



© 2025 Mash-xxl.info Реклама на сайте