Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Смазки условия режима

Коэффициент трения у подшипников с периодическим подводом смазки колеблется в зависимости от условий смазки и режима работы от значений, соответствующих жидкостному трению, до величин, соответствующих полусухому трению.  [c.372]

Износостойкость. Способность детали сохранять необходимые размеры труш,ихся поверхностей в течение заданного срока службы называют износостойкостью. Она зависит от свойств выбранного материала, термообработки и шероховатости поверхностей, от величины давлений или контактных напряжений, от скорости скольжения и условий смазки, от режима работы и т. д. Износ уменьшает прочность деталей, изменяет характер соединения (при работе появляется шум).  [c.22]


Внезапное приложение высокой нагрузки (неровность дороги), приводящее в условиях обычной граничной смазки к режиму задира и схватывания, в условиях установившегося режима ИП приводит только к диспергированию и уменьшению трения.  [c.86]

Повышение износостойкости детали, не касаясь физико-механических свойств материала, из которого она изготовлена, во многом зависит от размеров сопрягаемых поверхностей и условий режима нагружения и смазки. Примером тому может быть подшипник  [c.91]

Конструкция уплотняющего устройства выбирается исходя из условий режима работы узла, вида применяемой смазки и степени герметичности узла. По условиям работы уплотняющие устройства подразделяются на устройства для статического или динамического режима работы. При статическом режиме между уплотнением и соприкасающимися с ним поверхностями деталей не должно быть относительного движения. При динамическом режиме работы уплотнения должны ограничить возможность или полностью исключить утечки рабочего смазочного материала между подвижными деталями. Уплотнения для подвижных соединений подразделяются на уплотнения с контролируемыми зазорами и уплотнения контактного типа.  [c.94]

К. п. д. главной передачи зависит от ряда факторов геометрии зацепления, точности изготовления, жесткости опор, быстроходности передачи, условий эксплуатации, качества смазки, температурного режима и др.  [c.243]

Проведение испытаний в эксплуатационных условиях связано с трудностями учета дополнительных факторов, влияющих на срок службы подшипников (дефекты монтажа, несоответствие качества, количества и периодичности смазки, переменность режима работы, неблагоприятные конструктивные особенности узлов, в которых установлены подшипники, невозможность осуществления некоторых измерений и т. п.).  [c.139]

В зависимости от условий режима, смазку можно производить в маслянистых или гидродинамических условиях.  [c.314]

Срок службы фильтрующих элементов зависит от типа агрегата, марки и качества масла, применяемого в системе смазки, от режима работы агрегата и определяется в каждом отдельном случае, исходя из условий эксплуатации.  [c.179]

За последние годы ассортимент смазочных материалов пополнился новыми марками высококачественных моторных, индустриальных, энергетических и других масел и пластичных смазок. Возможность и условия (режимы смазки и нормы расхода) их использования во многих случаях еще не оговорены в паспортах смазки и в инструкциях заводов-изготовителей машин. Поэтому в справочнике эти новые марки смазочных материалов помещены только в перечне — основном ассортименте смазочных материалов (см. табл. 5, стр. 18).  [c.142]


Выбор типа уплотнения определяется окружной скоростью вала родом смазки условиями окружающей среды (запыленностью, влажностью, температурным режимом).  [c.209]

Для распространения значений р значение у значительно больше V, что благоприятно для образования режима жидкостного трения. Благоприятные условия смазки приводят к увеличению к. п. д. и уменьшению износа зубьев.  [c.168]

Радиальные подшипники. Расчет подшипников скольжения, работающих в режиме жидкостного трения, сводится к обеспечению условий, при которых цапфа будет отделена от вкладыша слоем смазки (рис. 13.6).  [c.316]

Коэффициенты трения покоя и движения зависят от многих факторов природы материала и наличия пленок на его поверхности (смазка, окисел, загрязнение), продолжительности неподвижного контакта, скорости приложения сдвигающего усилия, жесткости и упругости соприкасающихся тел, скорости скольжения, температурного режима, давления, характера соприкосновения, качества поверхности и шероховатости При прочих равных условиях  [c.68]

При выборе смазки необходимо учитывать условия работы опор, характер и величину нагрузок, величину скорости, температурный режим, специфические требования. Маловязкие масла применяют при низких температурах и высоких скоростях, и наоборот, чем больше нагрузка и выше температура, тем большую вязкость должно иметь масло. Жидкие смазки более предпочтительны, однако консистентные смазки эффективны при невысоких скоростях, больших давлениях и рабочей температуре опор до 120° С, а также при переменном режиме работы и длительных перерывах в работе. Сухие  [c.448]

Повышение износостойкости деталей может быть достигнуто соответствующим выбором материала, повышением твердости и чистоты трущихся поверхностей, обеспечением условий для жидкостного трения, соблюдением рационального режима смазки и предохранения поверхностей от загрязнения.  [c.159]

Расчет подшипников. Как указывалось выше, большинство подшипников скольжения работает в условиях несовершенной смазки. Ввиду отсутствия теории расчета при режиме несовершенной смазки подшипники рассчитывают условно  [c.315]

Для подшипников, работающих в режиме несовершенной смазки, условный расчет является основным и выполняется в большинстве случаев как проверочный-, для подшипников, работающих в условиях жидкостной смазки,— как ориентировочный. При неудовлетворительном результате расчета изменяют размеры цапфы или принимают другой материал вкладыша, и расчет повторяют.  [c.316]

Эксперименты показали, что процесс приработки на первых этапах характеризуется значительным износом и разогревом поверхностей трения, сопровождаемых изменением шероховатости. По истечении некоторого времени температура в зоне контакта уменьшается и достигает постоянного значения, при этом шероховатость стабилизируется, коэффициент трения падает и далее при сохранении режима трения (нагрузка, скорость, смазка) не меняется. Как показали эксперименты, значение, до которого падает коэффициент трения, является минимальным для данных условий работы пары трения. Этим условиям соответствует и минимальный износ трущейся пары.  [c.54]

Как показал эксперимент, коэффициент трения в установившемся режиме трения с различными консистентными смазками в условиях выбранных нами скорости и удельного давления изменяется незначительно и находится в диапазоне 0,21—0,32. В условиях смазки МоЗа коэффициент трения равен 0,18—0,22.  [c.75]

Критерий теплостойкости предусматривает обеспечение нормального теплового режима работы опоры (без чрезмерного нагрева). При вращении цапфы вала механическая энергия трения превращается в тепловую, которая через поверхности деталей опоры и смазку отводится из зоны трения и рассеивается в окружающей среде. Интенсивность тепловыделения пропорциональна работе сил трения, а отвод теплоты — площади поверхности трения подшипника. Исходя из этого, нормальный режим трения считается обеспеченным, если соблюдается условие  [c.408]


Наиболее благоприятным режимом трения является, как отмечалось ранее, жидкостное трение, однако оно возможно лишь при условии соблюдения необходимого соответствия между нагрузкой подшипника, скоростью движения, свойствами смазочной жидкости и размерами поверхностей трения. Расчет подшипников на жидкостное трение основывается на гидродинамической теории смазки и имеет своей целью установление оптимальных соотношений между перечисленными параметрами.  [c.408]

Учитывая влияние силы трения (смазки) на характер распределения пластической деформации по глубине, его исследование проводилось в условиях сухого трения, трения со смазкой часовым маслом и дисульфидом молибдена [105]. Процесс трения осуществлялся при скольжении индентора из стали ШХ-15 в одном направлении под нагрузкой 15 кгс по отожженным образцам из полированной стали 45. Число проходов индентора соответствовало установившемуся (по коэффициенту трения) режиму испытания (рис. 21). Зависимость коэффициента трения от числа воздействий индентора при смазке дисульфидом молибдена аналогична зависимости в условиях трения со смазкой часовым маслом (см. рис. 21), но его абсолютное значение несколько меньше — порядка 0,1.  [c.45]

Режимы 1 и 2 представляют нормальные условия, соответствующие гидродинамическому трению и трению при граничной смазке. Режим 3 более тяжелый и отличается от 1-го и 2-го по размеру частиц износа. При режиме 4 преобладает средняя форма окислительного износа, и большинство частиц представляет собой гематит. Режим 5 генерирует черные окислы, которые свидетельствуют об интенсивной форме окислительного износа, а режим 6 является индикатором приближения катастрофического разрушения. Свободные металлические частицы свойственны видам износа 1—3 и 6, которые могут быть определены по размеру частиц.  [c.88]

Как известно, трансмиссионные масла должны обеспечивать эффективное противоизносное действие в широком диапазоне нагрузок. При высою1х нагрузках такие масла работают в режиме граничной смазки. В связи с этим в трансмиссионные масла, в частности автотракторные, вводятся противозадирные присадки, например Англомол-99 . Механизм действия этих присадок в условиях режима граничной смазки основан на их химическом взаимодействии с поверхностью металла и образовании продуктов реакции, характеризующихся пониженным сопротивлением сдвигу [1]. С ростом нагрузки интенсивность этих реакций возрастает. Возрастает и скорость истирания продуктов реакции.  [c.222]

Эти методы в отличие от феррографии [1] не ограничены объемом исследуемого образца. Поэтому, сливая из чашки ЧШМ испытанный образец и залитый после слива образца промывочный растворитель, можно практически извлечь все частицы износа. Представляется, что при высокой противоизносной эффективности образца, в нем не будут содержаться крупные и стружечные частицы, которые при испытании в условиях режима граничной смазки могут образовываться при низкой противоизносной эффективности образца.  [c.228]

Жидкость гидропривода — его рабочий элемент, поэтому к ней предъявляются требования обеспечения прочности и долговечности. Она, как и всякий иной коиструктивньш элемент, подвержена механическому и химическому разрушению (деструкции), имеет ограниченный срок службы, причем последний во многом зависит от тина жидкости, условий и режима эксплуатации. Помимо этого жидкость служит смазывающим материалом (должна обеспечивать смазку механизмов гидропривода), а также охлаждающей средой.  [c.414]

Износ — в передачах, работающих без смазки, или при отсутст-иии условий для образований режима жидкостного трения (см. гл. 16).  [c.219]

При расчете неподвижных посадок подбиранзт посадку с натягом из условий при наименьшем натяге соединение должно передавать действующие нагрузки, а при наибольшем натяге — в материале соединяемых деталей не должны возникать остаточные деформации. При расчете подшипников скольжения зазор между цапфой и вкладышем подшипника определяют из расчета, основанного на гидродинамической теории смазки. Зазор в опоре должен обеспечивать полное разделение маслом трущихся поверхностей при заданном режиме работы опоры. По расчетному значению зазора подбирают стандартную посадку.  [c.77]

При полном анализе трибологических процессов в числе выходных параметров ТС учитывается такой важный параметр, как коэффициент трения. Он является результатом комплекса физико-химических процессов, сопровождающих трение двух тел, поэтому его нельзя отнести к какой-либо одной детали, одному материалу. Аналогично нельзя отнести к одному элементу ТС характеристики износостойкости (скорость изнапшвания, интенсивность изнашивания), так как они зависят от свойств всех элементов трибосистемы. Согласно современр1ым положениям трибологии коэффициент трения и интенсивность изнашивания являются нелинейными функциями физико-механических свойств материалов пары трения, условий работы (вид смазки, свойства и температура окружающей среды) и режимов трения (скорость относительного движения, контактное давление).  [c.8]

При недостаточной смазке и малой угловой скорости вала подшипники скольжения работают при граничной смазке и без смазки (участок /о — I, см. рис. 15.1). В этих режимах расчет подшипников выполняют условно по двум показателям среднему давлению р между цапфой и вкладьппем и произведению pv. Расчег по р гарантирует невыдав]н1ванпе смазки и представляет соЬой расчет на износостойкость. Расчет по pv гарантирует нормальный тепловой режим, т. е. отсутствие заедания, и представляет собой расчет на теплостойкость. Для ограничения износа и нагрева необходимо выполнить условия  [c.304]


Коэффициент трения и расход энергии. В условиях скудной смазки пористые подшипники на железной основе в энергетическом отношении в 2—3 раза выгоднее литой бронзы. Сравнительные испытания по данным. завода имени К. Маркса показали, что при различных режимах смазки потребляемая мощность для бронзы составляет при смазывании мазью 3,14—3,39 вт, мазью с 50% масла 2,65—2,74 вт, после снятия смазки с шейки вала 4,9—5,1 вт, при смазывании маслом в количестве 20 капель в 1 мин. 2,06— 2,16 вт, после прекращения смазывания 5,6— 5,5 вт, для железографи-та при периодическом смазывании, маслом 1,47—  [c.579]

Пусть известно, что за данный период времени t = Тпараметр изделия X может принимать различные значения, (так как является случайной величиной), но его экстремальная величина за данный период времени t = Tq будет (см. рис 3). Это значение определено, например, из оценки скорости износа сопряжения для наиболее неблагоприятных условий эксплуатации (максимальные режимы, отсутствие смазки и т. п.). Тогда, если значение параметра, при котором наступит отказ изделия, будет тах > эк. запас надежности /Сн можно подсчитать как  [c.21]

В узлах трения машин, работающих с частыми пусками и остановками или с затрудненными условиями подачи смазки, применяются вкладыши из металлокерамических материалов, получаемых на основе различных металлических порошков методом спекания под давлением. Особенностью металлокерамических подшипников является наличие в них пор (до 15—40% общего объема). Пористость используется для заполнения (пропитки) подшипников маслом, благодаря чему они обладают свойством са-мосмазываемости, столь необходимым при неустановившихся режимах трения.  [c.404]

В. И. Тихонович и Ю. И. Короленко исследовали образцы высокопрочного чугуна в условиях трения со смазкой в контакте с серым чугуном при небольщом нагреве (до 50° С) на поверхности высокопрочного чугуна отмечены довольно значительные разрушения и отдельные сколы [67]. С ростом температуры до 120°С поверхностный слой чугуна приобретает повышенную пластичность, деформация локализуется в этом слое и поверхность выглаживается. При этом значительных разрушений поверхности не наблюдали. Дальнейшее повышение температуры материала несколько изменяет микрорельеф поверхности в сторону более значительного разрушения, а работа образцов при нагреве до температуры 245° С приводит к еще большему увеличению геометрических параметров микрорельефа пову)хности трения. Работа на последнем режиме характеризовалась высоким и неустойчивым коэффициентом трения, наблюдались явления схватывания материала. Минимальный износ соответствовал температуре нагрева 90—100 С.  [c.20]

Современные машины компактны, их фрикционные сочленения сложны, а движущиеся части закрыты, что исключает непрерывный контроль за состоянием узлов трения. Для определения типа и интенсивности износа машины необходимо периодически разбирать, что дорого и опасно, так как вероятность аварии при пуске больше, чем в условиях установившегося режима работы [127]. Для контроля за работой узлов трения необходимы новые методы. К ним относятся вибрационный анализ, магнитные пробки, спектрографический анализ масла [128]. Последний метод интенсивно используется для обнаружения сильного износа по количеству частиц, которые поступают в смазку из подвижных сочленений. Во многих случаях этот метод эффективен, однако имеет и свои ограничения. Он показывает только количество металла в смааке, но не дает информации о размере и форме металлических частиц и не различает частиц окислов и других соединений металлов, что  [c.88]

Усталостная трещина на шарике или на дорожке трения шарикового подшипника может образовываться или под поверхностью и распространяться наружу, или на поверхности и распространяться вглубь. Это определяется прежде всего условиями трения, в частности, свойствами смазки [25]. При отсутствии в смазке поверхностно-активных веществ зарождение трещины происходит на поверхности, так как современные стали содержат много включений, препятствующих подповерхностному течению. Трещины распространяются в глубь материала под небольшим углом к поверхности, а затем параллельно последней. При тяжелых режимах нагружения давление под точкой контакта подшипника может достигать 400 кгс/мм Образующиеся на поверхности трещины попеременно по мере прохождения шарика подвергаются действию очень высоких и очень низких давлений. Попадающая в трещины смазка также подвергается действию очень высоких давлений и попеременно то попадает в трещину, то выбрасывается из нее. Многократное повторение этого процесса полирует стенки трещины, образуется слой Бейльби, который разрушается с образованием тонких чешуек. Чешуйки, сформировавшиеся в трещине или занесенные Б нее смазкой, образуют сферы в результате пластической деформации. Детальный механизм этого явления до конца еще не ясен.  [c.99]

В большинстве конструкций тормозов находит применение сухое трение фрикционных материалов по металлу, и только в некоторых конструкциях осевых тормозов необходима смазка трущихся поверхностей. Условия работы тормозных устройств различных машин весьма разнообразны как по режиму работы, так и по величинам скоростей скольжения, давлений и температур. В некоторых наиболее легких условиях работы до сих пор еще находят применение в качестве фрикционного материала колодки из дерева несмолистых пород. В качестве рабочей поверхности используют обычно торец дерева. Эти колодки обеспечивают достаточно высокий коэффициент трения, но имеют весьма низкую теплостойкость. При высоких температурах, развивающихся при трении, трущаяся поверхность таких колодок обугливается, что приводит к резкому изменению коэффициента трения. В целях предотвращения обугливания дерево рекомендуется пропитывать под высоким давлением сернокислым или фосфорнокислым аммонием. К недостаткам деревянных колодок относятся, кроме того, неравномерность изнашивания торцов вследствие неодинаковой плотности слоев дерева, а также большая гигроскопичность деревянных колодок и их способность коробиться и растрескиваться. Однако благодаря дешевизне этого материала, а также простоте изготовления деревянные колодки находят еще довольно широкое применение (например, в тормозах трамваев, подвесных канатных дорог и фуникулеров и т. п.). В ряде случаев в качестве фрикционного материала применяется текстолит, удовлетворительно работающий при температурах до 100° С. При нагреве сверх 120° С вследствие неравномерного выгорания пропитки и образования быстроизнашиваемых вздутий текстолитовые накладки быстро портятся. В настоящее время отечественная химическая промышленность выпускает большое количество разнообразных фрикционных материалов, весьма сложных по своему составу, обладающих различными фрикционными свойствами и предназначенных для различных условий применения.  [c.526]

Разновидностью алмазного выглаживания является процесс вибрационного выглаживания или виброобкатывания, разработанный проф. Ю. Г. Шнейдером [121]. При виброобкатывании инструменту, кроме подачи, сообщается еще осциллирующее движение с той или иной амплитудой. Процесс используется для создания на поверхности детали регулярного микрорельефа в виде сетки каналов, рисунок которой может изменяться вследствие варьирования режимом обработки — скоростью вращения детали, подачей, частотой и амплитудой вибраций (рис. 76, а—в). Изменяя силу выглаживания, можно изменять глубину каналов. Все это позволяет управлять маслоем-костью трущихся поверхностей, особенно работающих в условиях недостаточности смазки. К таким деталям относятся детали цилиндро-поршневой группы двигателей внутреннего сгорания, различные направляющие станков и прессов, детали других машин, склонных к схватыванию и задирам из-за недостаточности смазки, а также страдающих от фретинг-коррозии.  [c.133]


Технические требования. Муфты должны изготовляться в соответствии с требованиями ГОСТ 21.574—76, ГОСТ 21.573—76 и по рабочим чертежам, утвержденным в установленном порядке. Технические данные муфт приведены в табл. 32. Муфты ЭТМ...2, ЭТМ...4, ЭТМ...6, ЭТМ...8 должны применяться для работы в условиях, обеспечивающих смазку фрпкцнонньгх дисков минеральным маслом с кинематической вязкостью 17—23 сСт при температуре 50° С. Муфты пе должны применяться в среде взрывоопасной или содержащей агрессивные пары п газы в концентрациях, могущнх привести к повреждению деталей муфты или изыенешно свойства смазки. Ресурс (число циклов tV), который должна отработать каждая муфта, должен быть для номинального режима ие менее приведенного в табл. 33.  [c.239]


Смотреть страницы где упоминается термин Смазки условия режима : [c.246]    [c.82]    [c.273]    [c.97]    [c.400]    [c.210]    [c.326]    [c.7]    [c.75]    [c.547]   
Подшипники скольжения расчет проектирование смазка (1964) -- [ c.314 ]



ПОИСК



Режимы Условия

Режимы смазки



© 2025 Mash-xxl.info Реклама на сайте