Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент прокатки

Коэффициент прокатки 135 Кран 136  [c.409]

При горячей прокатке стали гладкими валками угол захвата равен 15—24°, при холодной — 3—8°. При установившемся процессе прокатки коэффициент треиия может быть примерно вдвое меньше.  [c.63]

Снижение массы заготовок, приближение форм деталей к формам наиболее простых и дешевых заготовок, использование заготовок в виде труб, профильного проката, чистотянутого материала и т. д. Применение литья или штамповки вместо свободной ковки сложных деталей, применение поперечной и винтовой прокатки, почти безотходной порошковой металлургии приводит к весьма существенному снижению массы заготовок. Снижение массы заготовок имеет не меньшее значение, чем снижение массы деталей. Известно, что коэффициент использования металла в машиностроении весьма невысок (в среднем он составляет 0,7), причем он тем ниже, чем меньше серийность выпуска машин.  [c.44]


Коэффициент трения может иметь различные значения для различных направлений на плоскости (например, при трении по дереву вдоль и поперек волокон, при трении по прокатному железу по направлению и перпендикулярно к направлению прокатки). Поэтому конус трения не всегда представляет собо " прямой круговой конус.  [c.77]

Рис. 218. Номограмма для определения толщины приповерхностного охлажденного слоя ( зоны твердения горячей прокатке полосы из стали 40. Начальная температура металла 1200 (а) и 900 °С (б). Коэффициент обжатия ho/hi полосы за проход Рис. 218. Номограмма для <a href="/info/280572">определения толщины</a> приповерхностного охлажденного слоя ( зоны твердения <a href="/info/274034">горячей прокатке</a> полосы из стали 40. <a href="/info/112173">Начальная температура</a> металла 1200 (а) и 900 °С (б). <a href="/info/274104">Коэффициент обжатия</a> ho/hi полосы за проход
Биметаллический регулятор. Регулятор температуры этого типа содержит биметаллическую полоску, получаемую путем горячей совместной прокатки двух металлов с различными температурными коэффициентами линейного расширения 1. я a . При изменении  [c.136]

Прокатка позволяет с наименьшими удельными затратами производить изделия, которые либо полностью воспроизводят предусмотренное конструктором поперечное сечение детали, либо максимально приближаются к нему. Прокатка обладает более высокими технико-экономическими показателями по сравнению с другими способами обработки металлов высокой производительностью, низкой себестоимостью и высоким коэффициентом использования металла. Заготовки из проката используют при непосред-  [c.90]

Действительно, при подходе заготовки к валкам в точках первичного контакта возникают, С одной стороны, радиально ориентированные активные Р и равные им реактивные (действующие на заготовку) R силы, а с другой — силы трения Т, касательные к поверхности валков в точках упомянутого контакта. Каждая из сил трения равна произведению нормальной активной силы Р на коэффициент трения /, т. е. Т = Pf = Rf. Рассмотрим проекции сил R и Т т продольное (горизонтальное) направление X и вертикальное — Z. При этом заметим, что силы выталкивают заготовку из рабочего пространства, а силы — втягивают в него (захватывают заготовку). Условием захвата заготовки валками и осуществления прокатки будет неравенство > Ру.. Но так как = Г os а = Rf os а, а Р = R sin а, то условием прокатки будет Rf os а > sin а. Разделив обе части неравенства на / os а, получим />tga, где а—угол захвата.  [c.63]


Таким образом, условием захвата заготовки валками и осуществление процесса прокатки является превышение коэффициента трения над тангенсом угла захвата. Заметим, что обжимающими или кующими заготовку силами являются силы и R .  [c.63]

Во избежание коробления и скручивания заготовок нри прокатке из-за большой разницы коэффициентов расширения между ними (коэффициент расширения нержавеющей стали примерно в 2,5 раза больше коэффициента углеродистой) пакет для прокатки собирают из двух пакетов с изолирующей прослойкой между ними из смеси окиси алюминия и лаков или ведут прокатку в специальных направляющих проводках. Изолирующая смесь наносится тонким слоем на поверхности нержавеющих листов.  [c.626]

Коэффициенты ФРО С , С определяли [310] на основе ультразвуковых измерений. Первые два из указанных коэффициентов получили на основе измерений временных задержек продольной и двух сдвиговых ультразвуковых волн частотой 7-10 МГц, распространяющихся в направлении, нормальном к плоскости листа, и поляризованных вдоль и поперек направления прокатки, а также упругих констант монокристалла исследуемого материала  [c.176]

Автор. Да. Этот эффект изучен при испытании образцов на одноосное растяжение, вырезанных вдоль и поперек направления прокатки. Определяли модуль упругости и коэффициент Пуассона для каждого нанравления. Эти данные использовали для корректной оценки коэффициента поперечной деформации при обоих видах испытаний на двухосное растяжение.  [c.70]

Способ движущейся деформации (прокатки) упругих тел позволяет создать линейные и угловые механизмы для осуществления малых перемещений — редукторы с высоким коэффициентом редукции (до нескольких десятков и выше). Применение упругих тел (металлы, упругие полимеры) в качестве элемента редукции способствует снижению стоимости этих механизмов. Дискретный (шаговый) характер позволяет осуществить строго определенную подачу ведомых звеньев.  [c.162]

Сравнение коэффициентов Ь и v, получаемых для прокатки и механической обработки, показывают, что наиболее близкой аналогией п])окатки является процесс плоского шлифования, расчетные формулы и номограммы которого будут проверены на прокате.  [c.134]

Для лабораторных образцов, выточенных из дуралюмина, коэффициент = = 0,85-н0,9 для образцов, выточенных из магниевых сплавов, Р = 0,7-т-0,8 для деталей из легких сплавов, содержащих на поверхности литейную корку, окалину и другие дефекты от прессования или прокатки, = 0,5 ч- 0,75 при обдувке песком или шабровке литейной или прокатной корки р = 0,8 -f- 1 при травлении корки после обдувки песком или шабровки р = 0,85 1.  [c.465]

Механические и антифрикционные свойства некоторых цинковых сплавов после прокатки и прессования иллюстрируются данными табл. 2. Цинковые сплавы после прокатки или прессования приобретают высокие антифрикционные свойства, превосходящие те же свойства литых сплавов. Из данных табл. 2 видно, что как коэффициент трения, так и износ цинковых сплавов значительно ниже, чем у баббита Б-83.  [c.340]

Измерение [вязкости (G 01 N 11/00-11/16 расплава в ковшах В 22 D 2/00) G 01 ( импульсов ускорения Р 15/00 коэффициента шума R 29/26 крутящего момента L 3/00 мощности L 3/00-5/28, R 21/00-21/14 работы L 3/00-5/28 сил L 1/00-1/26 уровня жидкости F 23/00-23/76) емкости для измерения количества текучих материалов В 65 D 41/26, 41/56 количества жидкости в устройствах для розлива или отпуска В 67 D 5/08-5/30 температуры (расплава в ковшах В 22 D 2/00 шин транспортных средств В 60 С 23/20), при прокатке, гибке, штамповке, изготовлении проволоки В 21 С 51/00 смешивании В 29 В 7/28, 7/72 формовании изделий из В 29) пластических материалов) ]  [c.85]

С повышением температуры это влияние уменьшается например, при температуре выше 500° С коэффициент теплопроводности сталей практически не зависит от вида термообработки [Л. 6]. Механическая обработка металла также влияет на коэффициент теплопроводности. После таких видов обработки, как волочение, прокатка, металл может приобрести слоистый характер и его теплопроводность может получить анизотропный характер, т, е. изменяться с направлением.  [c.8]


Для термически обработанных сталей коэффициент пропорциональности b имеет небольшое значение, так как возрастание износостойкости по мере увеличения твердости происходит с меньшей ин- структура в состоянии тенсивностью. Следует также отметить, прокатки 2 —перлит з —  [c.45]

При изготовлении биметаллов методом холодной прокатки образованию соединения способствуют внешние сжимающие напряжения Су, которые зависят от коэффициента трения, толщины полосы, длины и ширины очага деформации и других факторов. В соответствии с критерием (2.58) для обеспечения более эффективного соединения материалов при совместной пластической деформации необходимо любыми доступными средствами повышать значение Су. Этого можно достичь, например, при увеличении коэффициента трения на поверхности инструмент-металл, на поверхности раздела соединяемых металлов, при увеличении длины очага деформации, при создании подпирающих напряжений. Именно такие методы используют на практике.  [c.91]

Для уменьшения трения в зону деформации подают различные смазочно-охлаждающие жидкости вода, эмульсии, масла и т. д. Трение при обработке металлов давлением отличается от трения в узлах машин интенсивным обновлением поверхности металла, изменением рельефа поверхности рабочего инструмента, значительной температурой в зоне трения, большим перепадом давления по длине дуги захвата, изменением механических свойств металла, переменным значением скорости относительного смещения трущихся поверхностей. При прокатке полосы на гладкой бочке значение коэффициента трения находится в пределах 0,5.  [c.260]

При конкретном значении коэффициента трения диаметр валка определяет возможное уменьшение толщины полосы. Однако необходимо учитывать, что большие обжатия могут быть получены в результате увеличения диаметра прокатных валков, что не всегда желательно. При увеличении диаметра повысится усилие прокатки с увеличением диаметра валков бывает трудно, а в некоторых случаях невозможно получить полосы небольшой толщины. Оптимальная величина диаметра бочки рабочих валков клетей четырехвалкового стана холодной прокатки полосы зависит от сортамента проката, требований к точности размеров и качеству поверхности, от величины усилия и момента прокатки с учетом контактной прочности бочки и прочности шеек валков, от угла захвата, толщины смазочной пленки в зоне деформации металла валками. Кроме, того, необходимо учитывать требования производства по снижению расхода энергии при прокатке, стоимости продукции.  [c.261]

Расход металла. Процесс прокатки сопровождается потерями металла в виде окалины, обрези, стружки, образующейся при зачистке, фрезеровании, сверлении и т. д. Расход металла для производства готового проката для данного прокатного стана оценивается расходным коэффициентом. Определим расходный коэффициент при прокатке блюмов и слябов. Обрезь от головной и хвостовой частей блюмов и слябов достигает 17,5 %, потери металла в виде окалины равны 3 %. Следовательно, масса готовых слябов на 20,5 % меньше массы слитков, поступивших для прокатки, и составляет 79,5% расходный коэффициент при производстве блюмов (слябов) равен 100 79,5=1,26. Коэффициенты расхода металла при производстве сортового проката приведены ниже  [c.316]

После заправки полосы в моталку прокатный стан разгоняется до рабочей скорости (наибольшая 26 м/с) и производится прокатка. В каждой рабочей клети предусмотрена система подачи в зону деформации эмульсии из воды с мылом и маслом. Подачей эмульсии добиваются как снижения коэффициента трения, так и охлаждения валков. Сильный разогрев валков недопустим, так как это приводит к тепловому изменению диаметра валка по длине бочки, снижению твердости материала валка. Для уменьшения давления металла на валки и обеспечения устойчивости полосы относительно середины бочки валков применяется натяжение. На входе в прокатный стан натяжение создается в результате торможения полосы разматывателем и специальным устройством, на выходе — моталкой, а между рабочими клетями — в результате различия частот вращения электродвигателей привода валков смежных рабочих клетей. Общее относительное обжатие, получаемое полосой  [c.321]

Расход металла. При горячей прокатке толстолистовой стали расход металла определяется его потерями в виде окалины при нагреве и прокатке, в виде обрези боковых кромок, обрези переднего и заднего концов. В зависимости от состава стали, размеров листа, требований, предъявляемых к готовым листам, коэффициент расхода металла составляет 1,05—1,25.  [c.324]

Коэффициенты прокатки — коэффициенты, характеризующие продасс прокатки. К ним относятся суммарный коэффициент вытяжки, коэффициент вытяжки за пропуск, коэффициент уширения, коэффициент обжатия, относительное обжатие за пропуск, суммарное относительное обжатие, относительное уширение за пропуск, суммарное относительное уширение, относительная вытяжка и некоторые другие.  [c.135]

Наличие такой полосчатой структуры вызывает сильную анизотропию свойств, т. е. различие свойств образцов, вырезанных вдоль и поперек прокатки. В основном снижение так называемых поперечных свойств проявляется на характеристиках, связанных с заключительной стадией деформации (ударная вязкость, относительное сужение), другие механические свойства менее чувствительно реагируют на полосчатость. Анизотропию свойств характеризуют отношением ХпопДпрод, где X — свойство металла в (поперечном и продольном наяравле-ниях. Обычно ударная вязкость в поперечном направлении вдвое меньше, чем в продольном (соответственно коэффициент анизотроппи 0,5) путем повышения чистоты металла по сере и кислороду, используя усовершенствованные методы выплавки пли уменьшая строчечность совершенствованием методов прокатки ( поперечная прокатка ), коэффициент анизотропии ударной вязкости повышается до 0,7—0,8.  [c.191]


При обычной технологии глубокой вытяжки стакан на стали 12XI8HI0T вытягивается за три перехода с промежуточными отжигами, травлением и т.д. (см. рис. 302). При вытяжке в сверхпла-стичном состоянии эта же деталь получается за один переход. При этом вместо 630-т пресса двойного действия оказывается достаточным 100-т гидравлический пресс, улучшается однородность толщины стенок детали, на 10—12 % улучшается коэффициент использования металла. За счет однородно мелкозернистой структуры улучшаются механические свойства. Условия сверхпластической деформации ° 780- 850° e=10 2-i-10- с (т.е. 4 мин на одно изделие). Ультрамелкое зерно было получено с помощью скоростной рекристаллизации после холодной прокатки. Для этого нагрев катаных заготовок проводили в соляной ванне до 780° со скоростью 30— 50 °С с- и закаливали в воде.  [c.574]

Обследование сосуда после разрушения показало наличие исходного дефекта в виде трещины на внешней поверхности, ориентированной перпендикулярно направлению прокатки листа. Эта трещина и послужила причиной снижеппя прочности бака. Поскольку длина трещины более чем в 10 раз превышала ее глубину Z, то для коэффициента интенсивности воспользуемся формулой для пластины с боковым надрезом isT = 1,12 ОеУл (см. табл. 15.2, п. 2). В этой формуле стоит окружное напряжение, так как бак сварен по винтовой линии под углом 79° к образующей цилиндра, и иоперечное направление трещины на листе является осевым для бака. Обнаруженная глубзпш трещины составляла и = 0,76 мм.  [c.290]

Механизмы, основанные на прокатке упругого тела. Иаибольшимп конструктивными возможностями, по-видимому, обладает способ создания бегущей волны продольной деформации путем прокатки (раскатки) упругого тела, лежащего на жестком основании. Схема, поясняющая это явление (см. рис. 3.6), включает ролик (штамп), прижимающий упругое тело к жесткой опорной поверхности и создающий на нем поперечную деформацию которая, согласно закону Пуассона, порождает продольную деформацию е . Эта деформация без учета сил трения между упругим телом и сжимающими его поверхностями равна = И-Е, , где х — коэффициент Пуассона ( х < < 0,5). При движении (качении) прижимного ролика по упругому телу волна продольной деформации е движется [ТО нему со скоростью движения ролика. Особенностью этой бегущей волны деформации является тот факт, что ее вершина в каждый момент времени неподвижна, а остальная часть тела (вне волны) равномерно движется со скоростью, определяемой формулой (3.1).  [c.150]

Численные значения указанных выше характеристик и коэффициентов для металлов, применяемых в реакторостроении, в основном зависят от их химического состава и структурного состояния последние определяются исходными шихтовыми материалами, режимами выплавки, ковки, прокатки и термообработки. При создании первых АЭС (см. 1, гл. 1) с реакторами водо-водяного охлаждения широко использовался многолетний опыт проектирования, изготовления и эксплуатации тепловых электростанций. К настоящему времени наибольшее применение для оборудования первого контура ВВЭР в СССР и за рубежом получили три группы конструкционных сталей [1, 2, 4, 9, 26, 31, 35, 37, 38] 1) малоуглеродистые низколегированнь/е пластичные стали низкой прочности 2) низколегированные теплоустойчивые пластичные стали повышенной и высокой прочности 3) аустенитные нержавеющие стали.  [c.22]

Магнитострикционные металлы и сплавы. Наиболее употребительным является чистый никель тонколистовой прокатки. Для сердечников применяют никель марки Н в виде листов и лент толщиной 0,1 мм и менее. Пластины, из которых набирают сердечники, штампуют из листа или ленты, а затем нагревают на воздухе до 800 °С и выдерживают при этой температуре 10—15 мин для образования плотной оксидной пленки, являющейся диэлектриком и одновременно предохраняющей материал отдальнейщей коррозии. Оксидированные пластины коррозионноустойчивы как в атмосфере (вплоть до тропической), так и морской воде. Коэффициент магнитострикции чистого никеля = —37-10" . Знак минус показывает, что под воздействием магнитного поля сердечник укорачивается.  [c.216]

В обозначенпн марки (пятизначное число) Щ1фры означают первая цифра —класс по структурному состоянию и виду прокатки (1 —горячекатаная изотропная, 2 — холоднокатаная изотропная) вторая цифра — тип по содержанию кремния (О — сталь нелегированная без нормирования коэффициента старения 1 — сталь нелегировапная с нормированным коэффициентом старения третья цифра —группу по основной нормируемой характеристике (8— коэрцитивная сила) четвертая и пятая цифры — количественное значение основной нормируемой характеристики (для восьмой группы — значение коэрцитивной силы в Целых единицах А/м).  [c.546]

При производстве полированного и шлифованного листа слябовые слитки перед прокаткой обязательно подвергают огневой зачистке на глубину не менее 5 мм. Нагрев листовых слитков на одном из заводов производят в регенеративных нагревательных колодцах, отапливаемых газовой смесью с теплотворной способностью 4,28 Мдж м (1050 ккал м ). Коэффициент избытка воздуха при нагреве равен 1,1, при томлении 0,7.  [c.307]

Микролегирование стали Х23Н18 бором на 0,005% (по расчету) позволило существенно повысить пластичность металла, ликвидировать рванины при прокатке и снизить расходный коэффициент металла от слитков до слябов с 1503 до 1357 /сг/т.  [c.309]

Как следует из изложенного, благодаря силам тре-яия происходит захват металла валками, т. е. процесс лрокатки осуществим только при достаточной силе трения. В ряде случаев для улучшения захвата металла валками применяется принудительная подача, когда полоса заталкивается специальным приспособлением в валки, на поверхности валков выполняется наварка, концы полос делаются скошенными и др. Это вызвано тем, что соотношение между углом захвата и коэффициентом трения справедливо для момента начала процесса прокатки. При заполнении металлом зоны деформации бывает достаточным для протекания устойчивого процесса прокатки выполнение следующего условия / V2tga, т. е. при заполнении зоны деформации металлом угол захвата может в дйа раза превышать коэффициент трения. Трение является не только положительным, определяющим возможность осуществления процесса прокатки. К техническим процессам обработки металлов давлением предъявляют такие требования, как выполнение деформации при наименьшем расходе энергии, более длительном сроке службы инструмента, получение требуемого качества поверхности. При решении перечисленных задач трение является нежелательным.  [c.260]

Среднее давление зависит от многих параметров процесса прокатки сопротивления металла деформации К, обжатия, коэффициента внешнего трения /, отношения длины дуги захвата к средней толщине полосы IJ Ih p, натяжения внешних частей полосы, упругой деформации валков и т. д. Для случая прокатки широких полос (АЬ = 0) среднее давление определяется формулой А. И. Целикова  [c.263]


Смотреть страницы где упоминается термин Коэффициент прокатки : [c.135]    [c.396]    [c.105]    [c.115]    [c.18]    [c.27]    [c.152]    [c.164]    [c.10]    [c.358]    [c.253]    [c.284]   
Краткий справочник прокатчика (1955) -- [ c.135 ]



ПОИСК



334 факторы, определяющие силу прокатки прокатке, Коэффициент трения

Автомат-стан одноклетьевой продольной прокатки труб на короткой оправке конусной формы - Диаметр валков 619 - Коэффициент динамичности, момент прокатки 622 - Особенности стана, очаг деформации

Коэффициент трения при прокатке

Коэффициенты деформации при прокатке

Методы определения коэффициента трения при прокатке

Прокатка

Роль трения при прокатке. Коэффициент треиия при пластической деформации

Способы улучшения захвата и влияние различных факторов на коэффициент трения при прокатке

Способы холодной прокатки труб. Коэффициенты деформации



© 2025 Mash-xxl.info Реклама на сайте