Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сталь — Коэффициент теплопроводности

Марка стали Состояние Коэффициент теплопроводности к при температуре, С  [c.62]

При наличии разного рода примесей (сплавы) коэффициент теплопроводности металлов резко убывает. Например, увеличение содержания углерода в стали приводит к уменьшению коэффициента теплопроводности. Коэффициент теплопроводности легированных сталей за счет присадок еще более низок. При температуре 100° С коэффициент теплопро водности армко-железа (99,9% Ре) равен 60, что примерно в 5 раз превышает Я, высоколегированной аустенитной стали. При этом рост температуры приводит к увеличению коэффициента теплопроводности высоколегированных сталей. Наоборот, коэффициент теплопроводности углеродистых и низколегированных сталей уменьшается при увеличении температуры.  [c.269]


Приведем пример расчета. Следует определить толщину оптимального радиального ребра прямоугольного профиля наружным диаметром 101.6 мм, с несущей трубой диаметром 50.8 мм. Материал ребер — сталь с коэффициентом теплопроводности л==34.1 Вт/(м-°С). Отводимая мощность 23.4 Вт. Температура среды 46.2 °С, температура у основания ребра 113 °С, коэффициент теплоотдачи а==42 Вт/(м -°С).  [c.91]

Материалы средней теплопроводности. В первую очередь к ним относятся малоуглеродистые стали, обладающие коэффициентом теплопроводности . = 40—50 ккал/мчас°С. 1-)ги стали хорошо штампуются и свариваются. По сравнению с медными и алюминиевыми сплавами они имеют большую жаро прочность, что компенсирует меньшую величину цх теплопроводности. Малоуглеродистые стали имеют удовлетворительную величину, дешевы и широко распространены в технике. Несмотря  [c.323]

Змеевики пароперегревателя выполнены из труб жароупорной стали диаметром di/d2 = 32/42 мм с коэффициентом теплопроводности Х=14 Вт/(м-°С). Температура внешней поверхности трубы /с2 = 580°С и внутренней поверхности i i = 450 .  [c.13]

Определить площадь поверхности нагрева конвективного пароперегревателя, выполненного из труб жаростойкой стали диаметром di/d2=32/40 мм. Коэффициент теплопроводности стали )i.= = 39,5 Вт/(м-°С). Производительность пароперегревателя Q = = 61,1 кг/с пара. В пароперегреватель поступает сухой насыщенный пар при давлении р = 9,8 МПа. Температура перегретого пара па выходе /п = 500° С.  [c.16]

Коэффициент теплопроводности стали Я = 64 Вт/(м-°С). Удельное электрическое сопротивление стали р = 0,13 Ом-мм м.  [c.28]

Удельное электрическое сопротивление и коэффициент теплопроводности стали равны соответственно р = 0,85 Ом-мм /м, Х = = 18,6 Вт/(м-°С).  [c.29]

Коэффициенты теплопроводности и температуропроводности стали равны соответственно Х = 23,3 Вт/(м-°С), а==  [c.49]

Определить количество теплоты, которое будет подведено к 1 пластины в течение 2 ч после начала нагрева. Коэффициент теплопроводности стали Х = 37,2 Вт/(м-°С) и температуропроводности а = 7-10- м /с плотность р = 7800 кг/м .  [c.50]

Коэффициенты теплопроводности, температуропроводности и плотность стали соответственно равны Л = 49 Вт/(м-"С) а=1,4Х Х10-" м2/с р = 7850 кс/м .  [c.51]

Коэффициенты теплопроводности, температуропроводности и плотность стали соответственно равны Х = 49 Вт/(м-°С) а=1,4Х ХЮ-"" м2/с р = 7850 кг/м .  [c.51]

Коэффициенты теплопроводности сталей Х, Вт/(м-°С), в зависимости от температуры [24 и 25]  [c.261]


Примечания I. Обозначения V — удельный вес Я, — коэффициент теплопроводности а — температурный коэффициент линейного расширения Т — допускаемая рабочая температура / — коэффициент трений по стали при слабой смазке [р] — допускаемое среднее давление при смазке водой или минеральным маслом.  [c.427]

Пример 1-9. По стержню из нержавеющей стали диаметром 10 мм про. ходит электрический ток, вызывающий объемное выделение теплоты мощностью Qu = 2,4- 10 Вт/м . На поверхности стержня поддерживается температура /с = 30°С. Найти температуру на оси стержня to и плотность теплового потока на внешней поверхности стержня, если коэффициент теплопроводности стали А, = 15 Вт/(м °С).  [c.34]

Теплопроводность различных марок стали и сплавов, имеющих одинаковую основу, обычно отличается сравнительно мало. Так, например, сталь на ферритной основе имеет обычно коэффициент теплопроводности к = 5- 7 квт м град, сталь на ферритной основе с высоким содержанием хрома (более 10%) и сталь на  [c.167]

Возможность приближенного определения скоростей резания по действительному пределу прочности без учета теплопроводности для стали различных марок с одинаковой основой обусловлена не только малой разницей в коэффициентах теплопроводности, но и тем, что обычно изменение действительного предела прочности стали различных марок с одинаковой основой отражает и изменение их теплопроводности. В результате упрочнения основы металла как путем легирования, так м путем термической обработки теплопроводность его снижается обычно тем сильнее, чем больше упрочнение. Такое влияние упрочнения на теплопроводность  [c.170]

Сопоставление коэффициента теплопроводности у мартенситных и аустеиитных сталей при комнатных температурах показывает, что первые лучше проводят тепло, однако при высоких температурах, вследствие различного поведения, разница в их теплопроводности становится меньше или даже совсем сглаживается, что необходимо учитывать при расчете теплопередачи.  [c.218]

Величина входящая в эти формулы, представляет собою вес так называемого активного металла. Термин активный металл введен потому, что не весь металл котла одинаково быстро отдает или теряет аккумулированное тепло при переходе от одного режима к другому, главным образом из-за различных толщин стенок труб, барабанов и коллекторов. На рис. 3 приведена зависимость времени изменения избыточного количества тепла металла (после мгновенного изменения тем- г,сек пературы кипящей воды) для стенок труб различной толщины. Расчеты проведены применительно к трубам из обычной стали с коэффициентом теплопроводности = 40 ккал1м град Ч при коэффициенте теплоотдачи от стенки к кипящей воде а = 10000 ккал1м  [c.357]

Расчеты, проведенные применительно к трубам из углеродистой стали с коэффициентом теплопроводности 1 = 40 ктл1м-гр -ч, при коэффициенте теплоотдачи к кипящей воде а= 10 000 ккал м град- ч показали, что для кипятильных труб, толщина стенок которых со-  [c.188]

Коэффициент теплопроводности в продольном направлении k b (в направлении ориентации волокон) определяли на образцах в виде бруска длиной 10 см и толщиной 0,9 см (в поперечном сечении), используя в качестве эталона сталь ARM O. Коэффициенты теплопроводности в поперечном направлении кст определяли перпендикулярно слоям на образцах толщиной 0,9 см, имеющих форму диска диаметром 5 см.  [c.307]

Дополнительные данные внутренний диаметр колец й — 42 мм, наружный В — 52 мм, высота (длина) Ь — 10 мм вращающееся кольцо — сталь 40Х коэффициент теплопроводности фторопласта-4 Яф = 0,25 ккал м-ч-град коэффициент теплопро водности стали 40Х = 40,8 ккал м ч град-, коэффициент теплопроводносп масла А,л1= 16,8-10 /сл ал/л -ч плотность масла 89 кгс-сек 1м вязкость маслг  [c.180]

Исследованиями установлено, что при шлифовании жаропрочных сплавов радиальная и тангенциальная силы резания приблизительно в 2 раза больше, чем при обработке стали 45. Коэффициент теплопроводности для жаропрочных сплавов приблизительно в 4 раза меньше, чем для обычньгх конструкционных сталей.  [c.405]

Наибольшим коэффициентом теплопроводности обладают чистые серебро и медь Хж400 Вт/(м К). Для углеродистых сталей >. 50 Вт/(м-К). У жидкостей (неметг-ллов) коэффициент теплопроводности, как правило, меньше I Вт/(М К). Вода является одтм из лучших жидких проводников теплоты, д 1я нее Л =0,6 Вт/(м-К).  [c.71]


Физические свойства и высокая температура плавления требуют при сварке концентрированного источника тепла, но низкий коэффициент теплопроводности и высокое электрическое сопротивление создают условия, при которых для сварки титана необходимо меньше электрической энергии, чем для сварки стали и особенно А1. Титан маломагнитен, поэтому при его сварке заметно уменьшается магнитное отдувание дуги.  [c.106]

Коэффициент теплопроводности, теплоемкость и плотность стали рав1Н)1 соответственно Л = 45,4 Вт/(м-°С) с=0,502 кДж/(кг-°С) р = 7800 кг/м, а коэффициент теплоотдачи к поверхности листа а = -23,3 Вт/(м2.°С).  [c.42]

Коэффициенты теплопроводности и темиературопроводности стали равны соответственно Л = 21 Вт/(м-°С) й = 6,11-10 м с. Коэффициент теплоотдачи к поверхности вала а=140 Вт/(м2-°С).  [c.42]

Коэффициенты теплопроводности и температуропроводности стали соответственно равны >. = 37,2 Вт/(м.°С). а = 6,94.10- м /с. а коэффициент теплоотдачи на поверхности слитка а=186 ВтДм Х Х°С).  [c.46]

Коэффициент теплопроводности стали Х = 32 Вт/(м-°С) и температуропроводности а = 7-10-< м с коэффициент теплоотдачи с ноиерхности балки в процессе охлаждения оставался постоянным и равным 170 Вт/(м -°С).  [c.49]

Для стали коэффициенты теплопроводности и температуропроводности равны соответственно Х = 42 Вт/(м-°С) а=1,18 10 = mV . Коэффициент теплоотдачи к валу в нечи а=116 Bт/(м ).  [c.53]

При расчете принять удельное электрическое сопротивление и коэффициент теплопроводности стали постоянными и равными соответственно р = 0,85 Om-mmVm, Х=19,8 Вт/(м-°С).  [c.95]

Пример 23-2. Определить разность температур на наружной и внутренней поверхностях стальной стенки парового котла, работающего при манометрическом давлении 19 бар. Толщина стенки котла равна 20 мм температура воды, поступающей в котел, 46° С. С 1 поверхности нагрева снимается 25 кг ч сухого насыщенного пара. Коэффициент теплопроводности стали X == 50 вт1м-град. Барометрическое давление 750 м.и рт. ст. Стенку котла считаем плоской.  [c.369]

Определить температуру на поверхности и в центре равномерно нагретого до 927° С весьма длинного стального цилиндра диаметром 400 мм через 1,0 ч и через 0,5 ч после помещения его на воздухе с температурой 27° С. Коэффициент теплоотдачи от стенки цилиндра к воздуху а = 50 вт1м -град, коэффициент теплопроводности стали Хст = 50 вт1м-град, теплоемкость стали с = 0,71 кдж1кг-град, плотность стали р = 7900 кг/м .  [c.396]

Неметаллические подшинниковые материалы. Пластические массы — термореактивные типа текстолита и термопластичные, в основном полиамидные, широко используют для изготовления втулок и вкладышей подшипников их физико-механические свойства приведены в табл. 19. Коэффициент теплопроводности пластмасс в 200 раз меньше, чем коэффициент теплопроводности стали, что затрудняет теплоотвод из рабочей зоны подшипника. Для уменьшения нагрева вкладышей следует изготовлять их с малой толщиной стенок или же применять облицовку на металлической основе из тонкого слоя полиамидной смолы.  [c.423]

В данной работе были рассчитаны температурные поля неоднородных пластин, имитирующих реальные биметаллические пластины. Коэффициенты теплопроводности (А.) и температуропроводности (а) зависели от температуры и считалось, что они не испытывают разрыва в месте соединения пластин. Одна сторона биметаллической пластины испытывала циклический поверхностный нагрев, а противоположная охлаждалась по закону Ньютона. Были рассмотрены комбинации следующих материалов алюМиний-сталь, бериллий-медь, бериллив-сталь, ванадий-сталь, медь-сталь, ниобий-сталь,, молибден-сталь, мо либден-мель, которые приводят к нескольким характерным зависимостям а, X от координаты и температуры, что нашло отражение и а найденных зависимостях температуры от координаты и времени.  [c.195]

Контактные поверхности насадного обода и внутренней части диска турбины имеют номинальный диаметр d = 0,055 м с возможными положительными отклонениями (0...3)-10- м для отверстия и (2...4)-10 м для вала. Возможная суммарная шероховатость контактных поверхностей IiRai — 10...20 мкм. Минимальный и максимальный диаметры соединения di = 0,015 м и = 0,1 м, его средняя температура 150° С, материал — сталь 45 (коэффициент линейного расширения = 1,22-10- К , модуль упругости Ei = 1,96-10 МПа, коэффициент Пуассона Ц = = 0,3, теплопроводность Xj = 47,5 Вт/(м-К), где г = 1,2 в = 600 МПа. Оценить максимально и минимально возможные значения р и АТ , соответствующие (в атмосфере воздуха) значению плотности теплового потока, направленного внутрь соединения, = 144 кВт/м .  [c.219]

Стальной слиток, имеющий форму параллелепипеда разммами 200 X 400 X X 600 мм, помещен в печь, где температура = 00 С. Определить темпера-ратуру слитка через 2 ч после егс загрузки в печь, если начальная темпе-рату слитка = 20 °С. Коэффициент теплопроводности, удельная теплоемкость и плотность стали соответственно равны Я. = 45,4 Вт/(м. К), с = = 0,502 кДж/(кг К), р= 7800 кг/м , а коэффициент теплоотдачи к поверхности слитка а = 25 Вт/(м К).  [c.186]

Пример 11-1. Стальная цилиндрическая заготовка с диаметром 1=140 мм вставлена в печь, в которой поддерживается постоянная температура /онр = = 860° С начальная температура заготовки fo=27° . Физические свойства стали коэффициент теплопроводности Л = 38 вт1(м- град), средняя теплоемкость с = =0,703 кдж (кг-град), плотность р = 7850 кг м . Среднее за время нагрева значение коэффициента теплоотдачи можно определить по эмпирической формуле os = 0,105X(7 oKp/100) -f-12 вт (м -град). Требуется определить продолжительность нагрева до достижения на поверхности заготовки температуры 850° С.  [c.150]


Рис. 7 7. Зависимости коэффициентов теплопроводности ут сплавов от термодинамической температуры 1 нержавеющая сталь 2 — бериллиеоая бронза (98 % по массе Си И- 2 % по массе Пе) Рис. 7 7. Зависимости <a href="/info/790">коэффициентов теплопроводности</a> ут сплавов от <a href="/info/19036">термодинамической температуры</a> 1 <a href="/info/51125">нержавеющая сталь</a> 2 — бериллиеоая бронза (98 % по массе Си И- 2 % по массе Пе)
Сложной проблемой при экспериментальном исследовании нестационарных температур в стенке трубы при ее очистке водой является точное измерение температуры в заданной точке трубы из-за высокого коэффициента теплопроводности при низком значении удельной теплоемкости применяемых в котлострое-нии сталей.  [c.206]

При трении фрикционного материала по металлам с различными значениями коэффициента теплопроводности Я в той паре, в которой металл обладает большим коэффициентом теплопроводности, поверхностная температура будет меньше, а температурный градиент во фрикционном материале — больше. Для этой пары значения коэффициента трения и износостойкость будут соответственно выше. На фиг. 327 показано изменение износостойкости вальцованной ленты 6КВ-10 при трении в одинаковых условиях по металлическим элементам, имеющим различную теплопроводность. Так, точка А получена при трении по стали 55ЛП, точка Б — по чугуну СЧ 15-32, а точка В — по биметаллическому шкиву, имеющему металлизированный слой, состоящий из 50% стали 10 и 50% Си.  [c.551]

Наиболее подробно изучена обрабатываемость деформированных, т. е. прошедших горячую обработку давлением, стали и сплавов на ферритной, аустенитной и хромоникелевой основах твердостью НВ= 100-Ь350 кГ мж , при испытании которых на растяжение перед разрывом образцов возникает шейка. Для этих металлов скорости резания в случае точения быстрорежущими резцами могут быть определены с погрешностью до 25% по действительному пределу прочности и коэффициенту теплопроводности Я. при помощи зависимости (рис. 2)  [c.166]


Смотреть страницы где упоминается термин Сталь — Коэффициент теплопроводности : [c.21]    [c.244]    [c.258]    [c.198]    [c.11]    [c.12]    [c.41]    [c.154]    [c.172]   
Справочник машиностроителя Том 2 (1955) -- [ c.121 ]



ПОИСК



Коэффициент теплопроводности

Коэффициенты линейного расширения, модули нормальной упругости и коэффициенты теплопроводности котельных сталей

Коэффициенты теплопроводности и линейного расширения зарубежных сталей

Мел — Коэффициент теплопроводност

Сталь Коэффициенты

Сталь Теплопроводность

Сталь — Коэффициент теплопроводности магнитная сортовая — Свойств

Сталь — Коэффициент теплопроводности трансформаторная холоднокатанная — Свойства магнитные

Сталь — Коэффициент теплопроводности электротехническая листовая Характеристика

Теплоемкость, коэффициенты теплопроводности и линейного расширения высоколегированных, коррозионностойких, жаростойких и жаропрочных сталей

Теплоемкость, коэффициенты теплопроводности и линейного расширения легированных конструкционных хромистых сталей

Теплоемкость, коэффициенты теплопроводности и линейного расширения сталей углеродистых качественных конструкционных с повышенным содержанием марганца

Теплоемкость, коэффициенты теплопроводности и линейного расширения углеродистых высококачественных сталей небольшой прокаливаемости

Теплоемкость, коэффициенты теплопроводности и линейного расширения углеродистых конструкционных сталей обыкновенного качества и качественных сталей с нормальным содержанием марганца

Теплоемкость, коэффициенты теплопроводности и линейного расширения углеродистых сталей для отливок

Теплоемкость, коэффициенты теплопроводности и линейного расширения хромомолибденовых и хромовольфрамовых сталей



© 2025 Mash-xxl.info Реклама на сайте