Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Полюсы синхронного генератора

Полюсы синхронного генератора 38  [c.253]

Этого набора факторов достаточно для определения оптимальных соотношений индуктора при фиксации конструктивного исполнения, числа пар полюсов и активных изоляционных материалов. Конечно, указанные данные принципиально также можно рассматривать в виде факторов, что приведет к более универсальным регрессионным уравнениям. Однако резкое увеличение числа факторов сопровождается неоправданной громоздкостью регрессионных уравнений и большими осложнениями в обработке и оценке результатов факторного эксперимента. Учитывая, что при проектировании синхронных генераторов конструкция, материалы, частота вращения, частота напряжения известны до начала расчетов, эти данные можно считать фиксированными без особой потери общности в конечных результатах.  [c.106]


Первые синхронные генераторы, приводимые в действие паровыми машинами или двигателями внутреннего сгорания через ременную передачу, работали с малым числом оборотов окружная скорость ротора для таких машин составляла не более 15—25 м/с. С ростом мощности электрических генераторов повышалось требование равномерности вращения, что не обеспечивалось ни паровой машиной, ни двигателями внутреннего сгорания с их пульсирующим движением поршня и кривошипно-шатунным механизмом. В связи с этим в начале 90-х годов были разработаны специальные генераторы маховикового типа, в которых для уменьшения неравномерности хода была увеличена инерция вращающихся частей. В этих генераторах вращающиеся индукторы одновременно играли роль маховиков для первичного двигателя. Первичные поршневые двигатели накладывали определенные ограничения на конструкции синхронных генераторов их приходилось строить с большим числом полюсов, что, в свою очередь, увеличивало расход активных материалов и потери энергии в машине. Таким образом, хотя паровая машина к концу XIX в. достигла высокой степени совершенства, она не годилась для привода мощных электрических генераторов, так как не позволяла сконцентрировать большие мощности в одном агрегате и создать требуемые высокие скорости вращения. На смену паровым машинам пришли паровые турбины. Первоначально использовали сравнительно тихоходные турбины конструкции шведского инженера Г. П. Лаваля [35].  [c.81]

Синхронный генератор — генератор переменного тока, частота f которого пропорциональна числу пар полюсов р и частоте вращения ротора генератора п  [c.313]

Действующее значение э. д. с. Е синхронного генератора пропорционально частоте переменного тока f, числу витков W фазы, основному магнитному потоку полюсов Ф и обмоточному коэффициенту коъ  [c.313]

Синхронный генератор — электрическая синхронная машина, частота вращения которой не зависит от нагрузки и находится в строгом постоянном отношении к частоте сети переменного тока, обратно пропорциональному числу пар полюсов генератора. Синхронный генератор, как и двигатель, состоит из неподвижной (статора) и вращающейся (ротора) частей. Цилиндрическая станина статора чугунная литая. В верхней части станины сделан проем прямоугольной формы для установки блока регулирования напряжения. На внутренней поверхности станины равномерно по окружности расположены продольные ребра для запрессовки сердечника статора. Сердечник запрессован таким образом, что между его наружной поверхностью и продольными ребрами образуются каналы, по которым проходит через генератор охлаждающий воздух.  [c.26]


Синхронный генератор представляет собой электрическую машину, частота вращения которой не зависит от нагрузки и находится в строгом постоянном отношении к частоте сети переменного тока, обратно пропорциональном числу пар полюсов генератора. Синхронный генератор состоит из неподвижной (статора) и вращающейся (ротора) частей.  [c.37]

Здесь имеется в виду, что в синхронных генераторах общепромышленного применения с числом полюсов 2р = 4 и 2/7 = 6, а также в синхронных двигателях, обычно принимается целое число пазов на полюс и фазу.  [c.77]

На автомобильных кранах применяют синхронные генераторы серии ЕС (Е—единая, С—серия). Первая цифра индекса указывает номер габарита машины, вторая —номер длины, последняя— число полюсов, а следующая за ней буква С показывает наличие самовозбуждения. Например, марка ЕС-82-4 С расшифровывается так генератор синхронный единой серии, восьмого габарита, второй длины, четырехполюсный с самовозбуждением.  [c.125]

МИ, Притянутыми К изолированным кольцам 12 (см. рис. 39), укрепленным на ребрах И нажимных шайб. Генератор имеет шесть выводов фаз, два вывода от нулевых точек обмоток статора и два вывода от обмотки полюсов ротора. Основные характеристики синхронного генератора показаны на рис. 42.  [c.39]

Как известно, частота вращения синхронного генератора и частота тока связаны зависимостью я = 60 //р. Для получения частоты 400 Гц возбудитель имеет 32 полюса. Трехфазная обмотка статора соединена по схеме звезда с выведенным нулем. Обмотка возбуждения, расположенная на роторе, питается постоянным током через два контактных кольца. Для уменьшения потерь  [c.82]

Генератор собственных нужд — ГСЯ — трехфазный синхронный с явно выраженными полюсами, с самовозбуждением через трехобмоточный трансформатор ТС и выпрямитель ВЗ. ГСП питает обмотку возбуждения СГ через трансформатор ТВ, выпрямитель В2, тиристорный регулятор возбуждения ТРВ и блок гашения поля БГП. От него же получают питание асинхронные двигатели вспомогательных агрегатов — вентиляторов холодильника MX, тяговых двигателей МТ преобразовательной установки МП, а также приводы тормозного компрессора МК и водяного насоса MB цепи заряда аккумуляторной батареи А Б через тормозное зарядное устройство УЗА и резисторы заряда СЗБ. На выход УЗА подключены все потребители тепловоза — освещение, отопление кабины и т. д. (на схеме не показаны). Пуск дизеля осуществляется от стартерного двигателя постоянного тока С, питаемого от А Б через пусковой контактор КП. Для исследований может быть осуществлен пуск дизеля от А Б через тяговые инверторы и синхронный генератор (эти дополнительные цепи и устройства не показаны).  [c.192]

Подвозбудитель синхронный ВС-652 84 Полюсы главные генератора 44 ----добавочные 30, 45  [c.299]

На тепловозах с электрической передачей постоянного тока применяют электрический пуск дизеля. Для этого на главных полюсах тяговых генераторов укладывают, кроме обмотки независимого возбуждения, пусковую обмотку, получающую питание от аккумуляторной батареи только во время пуска дизеля. При пуске тяговый генератор работает в режиме двигателя с последовательным возбуждением и приводит во вращение коленчатый вал дизеля. В передачах переменно-постоянного или переменного тока для пуска дизеля используют стартер-генераторы. Ведутся работы по использованию синхронных генераторов для пуска дизеля.  [c.6]

В электрической передаче переменного тока используют в качестве тягового генератора синхронный генератор, а в качестве тяговых электродвигателей — асинхронные короткозамкнутые двигатели. Такие двигатели при одинаковых параметрах с двигателями постоянного тока имеют меньшие габариты, в 1,2—1,4 раза легче, в 2—3 раза дешевле, практически не имеют ограничений по силе тяги и току и обладают большой надежностью в эксплуатации из-за отсутствия щеточно-коллекторного аппарата. Для условий тяги регулирование частоты вращения ротора асинхронного коротко-замкнутого двигателя может производиться изменением частоты подводимого напряжения или числа полюсов.  [c.6]


Эта схема по сравнению со схемами, использующими возбудители с расщепленными полюсами, имеет ряд преимуществ. Прежде всего автоматическое регулирование пускового тока на каждом положении контроллера. Для расширения диапазона регулирования пускового тока на низших позициях дополнительно снижено возбуждение тахогенератора Т и синхронного генератора СГ. Схема позволяет ограничивать максимальное напряжение тягового генератора, которое не допускает повышения напряжения при боксовании колес, проверке схемы и др. Практически отсутствует влияние нагрева обмоток и гистерезиса на режим работы тягового генератора.  [c.202]

Ротор синхронного генератора, показанный на рис. 25, а, является, по сути дела, вращающимся магнитом с южным и северным полюсами. Эти полюсы располагаются на диаметрально противоположных сторонах сечения ротора и отделены друг от друга продольными пазами, прорезанными в металле. В пазах размещаются обмотки, которые образуют замкнутые цепи таким образом, что протекающий в обмотках ток создает магнитное поле. К сожалению, простым вращением постоянного магнита получать столь интенсивные магнитные поля невозможно.  [c.147]

Режим рекуперативного тор.можения при работе машины как асинхронного генератора выше синхронной скорости применяется главным образом в короткозамкнутых двигателях с переключением полюсов. Если машина рабо-  [c.17]

Параллельная работа турбоагрегата имеет место в тех случаях, когда данный генератор включен параллельно с другими генераторами в одну электрическую сеть. Это может быть сеть только данной ТЭЦ или нескольких станций предприятия (гидравлических, паровых, дизельных) либо энергосистема большой мощности. При параллельной работе все генераторы системы работают синхронно с одной частотой, а при одинаковом числе полюсов— с одной скоростью вращения. Генераторы сети (системы) вынуждают генератор данной турбины вращаться со скоростью, отвечающей частоте системы или сети предприятия.  [c.105]

Самыми мощными электрическими машинами являются генераторы электрической энергии, относящиеся к типу синхронных машин переменного тока. Роторы таких генераторов представляют собой электромагниты с 2р-парами полюсов. Рабочая частота вращения ротора со = 50/р Гц.  [c.519]

Гидрогенераторы — синхронные машины, работающие на общую сеть с частотой, одинаковой для всех питающих ее генераторов. Частота вырабатываемого электрического тока зависит от числа оборотов и числа пар полюсов генератора.  [c.84]

Щетки применяют на коллекторах электромашин постоянного и переменного тока, в тяговых электродвигателях с добавочными полюсами, в крановых двигателях, двигателях для подъемников, прокатных станов, компрессоров в шахтных и рудничных моторах, на одноякорных преобразователях, а также на многих других генераторах и двигателях постоянного и переменного тока асинхронных и синхронных.  [c.284]

Для наблюдения явления парамагнитного резонанса испытуемый образец вносят в ячейку с волноводом или объемным резонатором, помещенную между полюсами магнита. Источник переменного модулирующего напряжения вырабатывает пилообразное напряжение, которое подается в усилитель мощности и служит для питания катушки электромагнита или для модуляции СВЧ генератора. В контрольную ячейку помещается исследуемый образец и от источника вводится энергия СВЧ. Выходной сигнал этой ячейки поступает на прие.мник или болометрический детектор, мост, синхронный усилитель и гальванометр. Болометр включается в плечо моста, который балансируется нри бездефектном образце. Возникновение дефекта и связанного с ним резонансного поглощения приводит к разбалансу моста, сигнал с частотой модуляции усиливается синхронным усилителем и гальванометр фиксирует появление дефекта. В тех случаях, когда линии поглощения очень острые (например, когда полость дефекта заполняется некоторыми газами), применяется модуляция СВЧ источника, а выходной сигнал ячейки детектируется балансным смесителем СВЧ приемника, усиливается и после вторичного детектирования наблюдается на осциллографе. развертка которого производится пропорционально частоте СВЧ источника. Появление дефекта фиксируется по форме кривой на осциллографе. В этом случае можно использовать другой вид индикатора. Измеряя расстояние между пиками поглощения (по частоте или напряженности магнитного поля), можно судить о составе материала дефекта, а по ширине пика на определенном уровне контролировать его структуру. Резонансные частоты не зависят от размеров образца, поэтому результаты контроля свидетельствуют об эффектах, связанных только с материалом изделия или дефекта.  [c.458]

Машина при динамическом торможении работает как синхронный генератор с неподвижными полюсами при переменной частоте. Частота уменьшается по мере снижения скорости. Форма кривой вращающего момента почти одинакова с формой в двигательном режиме [21, 14]. Величина постоянного тока возбуждения зависит от схемы включения обмо-  [c.17]

Сам термин сихронная машина был введен Ч. П. Штейнмецем. Уже в конце XIX в. были разработаны конструкции роторов, которые лежат в основе современных типов синхронных генераторов с явно выраженными полюсами в тихоходных машинах, а также в виде цилиндрического ротора с неявно выраженными полюсами в быстроходных машинах.  [c.81]

Положение кардинально изменилось лишь тогда, когда в качестве первичных двигателей стали применять быстроходные паровые турбины и на их основе возник совершенно новый тип синхронных генераторов. В 1884 г. Ч. Парсонс изобрел реактивную паровую турбину, предназначенную специально для электростанции. Для того чтобы этот быстроходный двигатель насадить без промежуточного редуктора на один вал с электрическим генератором, имевшим значительно меньшую оптимальную скорость, Парсонс разработал многоступенчатую турбину. Дальнейшее совершенствование турбины Парсонса шло неразрывно с развитием генераторов возник единый агрегат — турбогенератор [2, с. 60—62]. Некоторое время создавались турбогенераторы постоянного тока, предельная мощность которых достигла 2000 кВт при 1500 об/мин. Постепенно они были вытеснены турбогенераторами, вырабатывавшими переменный ток. Большие скорости вращения сказались на конструктивном выполнении обмоток генераторов первоначально роторы строили с явно выраженными полюсами, но возросшая механическая нагрузка и большие потери на трение о воздух заставили перейти к распределенной обмотке возбуждения. Уже в 90-х годах турбина Парсонса получила широкое распространение в Англии, а ее применение на Европейском континенте несколько задержалось, несмотря на то что в 1895 г. фирма Westinghous , а годом позже фирма Brown, Boveri С° прибрели право на строительство турбин Парсонса [36, с. 62]. Перелом произошел в 1899 г., когда Парсонс выполнил заказ на две крупные по тому времени турбины для приво-  [c.81]


Пример. Произведем расчет высокочастотной вибрации трехфазного синхронного генератора с явновыраженными полюсами (650 ка-а, 400 в, 50 гц, 2р = = 4), имеющего следующие данные  [c.78]

В работе ГСВЧ участвуют службы времени десяти соцстран. Непрерывно принимаются и обрабатываются сигналы радиостанций США, Англии и ряда других стран, Международного бюро мер и весов, Службы движения полюсов. Международного консультативного комитета по радиосвязи. Все объекты транспорта, связи и промышленности работают в едином ритме системы навигации и управления самолетами, судами и спутниками, автоматизированная система связи СССР, синхронные генераторы Единой энергетической системы СССР, десятки тысяч АСУ и АСУ ТП, миллионы часов и хронометрических приборов. И точность работы всех этих потребителей зависит от фантастической ючности Государственного эталона времени, частоты и длины.  [c.41]

Тепловоз выполнен на базе поставлявшегося на железные дороги СССР маневрового тепловоза ВМЭ1 мощностью 442 кВт Венгерской Народной Рес-лублики. Все оборудование тепловоза, кроме дизеля, компрессора, экипажной части и кузова, разработано и изготовлено заново. Дизель Д (рис. 155) вращает тяговый синхронный генератор СГ и генератор собственных нужд ген. Синхронный генератор имеет две трехфазные сдвинутые на 30° эл. обмотки статора, ротор с явно выраженными полюсами, обмоткой возбуждения, демпферной обмоткой и контактными кольцами.  [c.192]

Синхронный генератор преобразователя ПЭ-5Д. Состоит из синхронного генератора для питания вспомогательных цепей и цепей управления электропоезда ЭР22М. Представляет собой трехфазную шестиполюсную электрическую машину мощностью 38 кВ-А и номинальным напряжением 230 В. Номинальный ток генератора 120 А, созф — 0,8. Ротор генератора насажен на выступающий конец вала 3 электродвигателя преобразователя (рис. 60). Сердечник ротора 9 стальной литой, шестигранной формы. Полюсы И набраны из листовой стали и закреплены на нем каждый тремя болтами. На сердечник ротора напрессована несущая втулка 4 с укрепленными на пластмассе латунными контактными кольцами 2.  [c.85]

Синхронный генератор (рис. 3.11) — это явнополюсная машина, имеющая две трехфазные обмотки (звезды) на статоре, сдвинутые на 30°эл. Корпус ротора генератора сварной, подобен корпусу якоря генератора тепловоза ТЭЗ, т. е. имеет безвальную конструкцию, отличающуюся монолитностью и прочностью. В цилиндрическую часть корпуса ротора 13 вварена стальная втулка, на которой монтируют токосъемные кольца, с противоположного конца вварен фланец для соединения с коленчатым валом дизеля. На корпусе ротора расположен индуктор (магнитопроводное ярмо) из листовой стали со штампованными пазами для крепления полюсов. Листы обода стянуты нажимными шайбами. Сердечники полюсов набраны из отдельных листов электротехнической стали толщиной  [c.56]

Станина генератора собственных нужд, служащая одновременно передней нажимной шайбой для сердечника статора, упирается в торец промежуточйого щита, чем обеспечивается необходимая жесткость конструкции. Торцовый подшипниковый щит агрегата по конструкции подобен щиту синхронного тягового генератора. Роторы агрегата имеют общий сварно-литой безвальной конструкции корпус. На корпусе расположены две самостоятельные системы полюсов — тягового генератора и генератора собственных нужд. За генератором собственных нужд расположены контактные кольца обеих машин. Конструкция тягового синхронного генератора СГ подобна описанной выше.  [c.60]

Рис. 5.9. Испытания тяговых машин под нагрузкой а — схема стенда взаимной нагрузки б — схема стенда для мощных синхронных генераторов у4 — асинхронный электродвигатель ДПГ, ДПТД — обмотки добавочных полюсов генератора и двигателя ВГ, ВТД — обмотки возбуждения генератора и двигателя / л, /г, /тл — токи линейного генератора, генератора и тягового электродвигателя Рис. 5.9. <a href="/info/636908">Испытания тяговых машин</a> под нагрузкой а — схема стенда взаимной нагрузки б — схема стенда для мощных <a href="/info/214712">синхронных генераторов</a> у4 — <a href="/info/12082">асинхронный электродвигатель</a> ДПГ, ДПТД — обмотки <a href="/info/293274">добавочных полюсов</a> генератора и двигателя ВГ, ВТД — <a href="/info/205331">обмотки возбуждения</a> генератора и двигателя / л, /г, /тл — токи линейного генератора, генератора и тягового электродвигателя
Исполнение агрегата защищенное с независимой нагнетательной вентиляцией. Основным несущим узлом этого агрегата является статор синхронного тягового генератора (рис. 28). Для расположения генератора собственных нужд имеется промежуточный щит. Статор генератора собственных нужд расположен таким образом что его передняя нажимная шайба упирается в торец промежуточного щита, чем обеспечивается необходимая жесткость конструкции. К подшипниковому щиту агрегата относятся литая ступица, подшипник и крышки с уплотнительными кольцами. Ротор агрегата имеет общий безвальной конструкции корпус (сварно-литой). На корпусе расположены две самостоятельные системы полюсов — тягового синхронного генератора и генератора собственных -нужд. За вспомогательным генератором расположены контактные кольца обеих машин. Конструкция тягового генератора СГ подобна описанной выше. Опорные лапы агрегата по расположению базовых отверстий унифицированы с опорными лапами.генератора ГС-504А, что дает возможность устанавливать агрегат взамен генератора ГС-504А без переделки поддизельной рамы.  [c.38]

Преобразователи постоянного тока в переменный распространены значительно меньше, чем преобразователи переменного тока в постоянный они применяются в электрической тяге на установках с рекуперацией энергии и на электростанциях с буферной аккумуляторной батареей. П. постоянного тока в переменный представляет собой совмещение шунтового двигате-ся с синхронным генератором. Очевидно соотношения между напря жениями и токами, имеющие место в П. переменного тока в постоянный, справедливы и для обращенного П. Особенностью обращенного П. является то, что величина полезного магнитного потока меняется в нем с нагрузкой и м. б. регулируема путем изменения тока возбуждения. В обращенном П. сила и сдвиг фаз переменного тока не зависят от тока возбуждения поэтому продольная составляющая поля реакции якоря может изменять поток. При индуктивной нагрузке П. продольное поле размагничивает полюсы, при емкостной—намагничивает. Поперечное поле, также как в П. переменного тока в постоянный, очень мало и почти не влияет на поток. В виду влияния нагрузки на величину потока число оборотов П. зависит от режима в сети. Действительно со стороны постоянного тока П. работает как шунтовой двигатель и следовательно скорость его обратно пропорциональна величине магнитного потока. При индуктивной нагрузке число оборотов П. увеличивается. Разнос П. может быть при протекании через якорь реактивного тока большой силы или коротком замыкании в сети переменного тока. Из-за опасной роли индуктивной нагрузки П. не следует применять в сетях с большим числом двигателей и трансформаторов. Для предохранения от разноса пользуются ограничителем скорости. Зависимость скорости П. от его нагрузки представляет собой крупный недостаток, т. к. частота сети переменного тока получается непостоянной. Для получения неизменной скорости П. прибегают к специальной мере—  [c.302]


Двигатель-генератор представляет собой механическое соединение синхронного двигателя и синхронного генератора первый приключается к одной сети, а второй—к другой. Эта система является наиболее распространенной для соединения сетей между собой. Числа периодов сетей относятся как числа полюсов обеих машин в виду этого двигатель-генератор не может ареобразовывать энергию любой частоты в любую. Возбуждение каждой машины производится обычно от отдельного генератора постоянного тока. Агрегат доводится до синхронной скорости, необходимой для приключения двигателя к его сети, небольшим вспомогательным двигателем или, в новых установках, пользуются асинхронным пуском. В этом случае синхронный двигатель имеет соответствующую конструкцию. Для возможности регулирования непосредственно агрегатом распределения мопщости, при параллельной работе с другими асинхронными машинами, статор двигателя делается поворотным. Сдвигая его относительно статора генератора, можно изменить режим работы. Синхронный двигатель обыкновенно играет и роль синхронного конденсатора— улучшает os 9 своей сети. Отметим, что минимальная мопщость агрегата при параллельной работе станций д. б. не менее 10— 15% мопщости меньшей из них при гидроустановках не менее 15—20%. Вместо синхронного двигателя иногда применяют hh-  [c.308]

УстройствоС. д. В конструктивном отношении С. д. весьма сходны с устройством синхронных генераторов переменного шока (см.). С. д. вьшолняются а) с явно выраженными полюсами, б) с неявно выраженными полюсами, с распределенной обмоткой возбуждения, в) по типу асинхронных двигателей. Двигатели небольшой мощности дел аются с неподвижной внешней магнитной системой и внутренним вращающимся якорем. Нормальное же устройство С. д.—вращающаяся внутренняя магнитная система (ротор) и внешний неподвижный якорь (статор). Типичные формы устройства якорной и магнитной систем С. д. изображены на фиг. 1.  [c.426]

Ротор явнополюсный, имеющий 12 полюсов. Ток синхронного генератора СГ поступает в выпрямительную установку В и далее в тяговые двигатели постоянного тока.  [c.98]

Параметрами, определяемыми для выбора турбины, являются частота вращения в установившемся режиме п (об/мин), частота вращения при разгоне турбины Прзг (об/мин) и диаметр рабочего колеса Di (м). Для гидротурбин, работающих на ГЭС в СССР, частота вращения, называемая синхронной, должна удовлетворять условиям получения трехфазного тока частотой 50 Гц. Отсюда = [60/р = 30001р, где / = 50 Гц —число пар полюсов. Разгонная частота вращения возникает при аварии в системе регулирования и имеет наибольшее значение при Яотах и сбросе нагрузки с генератора. Она определяется По разгонной характеристике. Коэс ициент. разгона Крзг = увеличивается с увеличением быстроходности турбин.  [c.6]

Гц. Поскольку ротор гидрогенератора имеет большое число полюсов, можно ожидать, что вызываемая вращающимся магнитным полем ротора форма колебаний статора будет иметь большое число узлов по окружности и малую амплитуду колебаний. Однако статор гидрогенератора из-за большого диаметра изготовляют ие целиком, а по частям, между частями сердечника имеются зазоры, существенно снижающие его жесткость. По этой причине могут возникать повышенные вибрации сердечника статора, особенно вблизи стыков. С целью снижения вибраций сердечника статора в последнее время у крупных гидрогенераторов сердечник собирают в единое кольцо непосредственно на электростанции. Описанные стогерцовые колебания статора, создаваемые вращающимся магнитным полем ротора, имеют место как при холостом ходе генератора, так и после включения его в сеть. Существует еще один тип колебаний статора, который обнаруживается только у включенного в сеть гидрогенератора (синхронной машины переменного тока). Эти колебания создаются переменным магнитным полем статора, возникающим в результате появления тока в обмотке статора. Гармонические составляющие магнитного поля статора могут иметь как большее, так и меньшее, чем 2р, число волн по окружности с различными частотами вращения. Наблюдались повышенные вибрации статора с небольшим числом волн и малыми по сравнению со 100 Гц частотами. Эти вибрации устраняются выбором схемы обмотки статора [5].  [c.523]

Генератор Г501 представляет собой трехфазную синхронную электрическую машину с электромагнитным возбуждением и клювообразными полюсами. Он устанавливается в направляющий аппарат воздуходувки.  [c.62]

При подаче постоянного тока в обмотку возбуждения полюсы каждого сердечника ротора приобретают разноименную полярность. Магнитный поток полюсов замыкается через статор. При вращении ротора его магнитное поле пересекает витки катушек статора и в них индуктируется э. д. с., создающая переменный ток. Частота тока увеличивается с повышением числа оборотов ротора. Такие генераторы называют синхронными. Переменный ток непригоден для заряда аккумуляторных багарей. Его преобразовывают в постоянный при помощи выпрямителя.  [c.106]


Смотреть страницы где упоминается термин Полюсы синхронного генератора : [c.27]    [c.39]    [c.260]    [c.417]    [c.92]    [c.33]    [c.27]    [c.121]    [c.12]   
Электрические машины и электрооборудование тепловозов Издание 3 (1981) -- [ c.38 ]



ПОИСК



Генератор синхронный

Полюс

Полюс генератора



© 2025 Mash-xxl.info Реклама на сайте