Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Синхронные Устройство

Автоматические линии можно разделить на синхронные и несинхронные. В синхронных линиях (рис. 6.121, а) заготовки 1 передаются непосредственно от одного станка 2 к другому с помощью транспортного устройства. Это устройство перемещает одновременно все заготовки на шаг I. Станки в линии устанавливают так, чтобы можно было одновременно обрабатывать заготовки с двух сторон. Поворотный стол 3 позволяет последовательно поворачивать заготовки на 90° для того, чтобы на втором участке линии обрабатывать другие стороны.  [c.397]


Автоматические линии представляют собой систему устройств, состоящую из группы взаимосвязанных между собой синхронно работающих станков, транспортных механизмов и приборов, посредством которых согласованно, в определенной последовательности и в установленное соответствующими режимами для каждой позиции время, без участия рабочих выполняются операции технологического процесса по обработке исходного материала или заготовок (или по сборке изделий, перемещению или перебазированию полуфабриката и контролю в процессе обработки).  [c.454]

Рнс. 3.15. Схема шумового термометра на основе метода равных сопротивлений [21]. 1 — усилитель с низким уровнем собственных шумов 2, 5 — фильтры 3 — аттенюатор 4 — частотная компенсация аттенюатора 6 — низкочастотный усилитель, демодулятор и преобразователь напряжения в частоту 7 — тактовый генератор 8 — детектирующая цепь и управляющий триггер 9 — устройство для отключения счетчика и остановки тактового генератора 10 — реверсивный счетчик Сь — запоминающие конденсаторы 51—5б — управляемые синхронные переключатели, аналогичный переключатель входит в низкочастотный усилитель.  [c.116]

В основу разработки циклограмм принимают синхронные во времени графики перемещений исполнительных органов механизмов или устройств. Для примера на рис. 18.5 показаны а — изменение угла поворота коленчатого вала б, в — перемещение поршня, впускного и выпускного клапанов одного из цилиндров ДВС и соответствующие им д — линейные г—прямоугольные и е — круговые циклограммы.  [c.484]

Другим методом монохроматизации является механический монохроматор. Принципиальная схема этого устройства изображена на рис. 9.8. Непрерывный пучок нейтронов из реактора поступает в трубу длиной от нескольких метров до десятков метров, на концах которой установлены два непроницаемых для нейтронов диска. Каждый диск имеет узкую радиальную щель. Оба диска синхронно вращаются с угловой скоростью и>, причем их щели сдвинуты по фазе на некоторый угол ф. Поэтому, если расстояние между дисками равно L, то через трубу проходят только нейтроны со скоростями, близкими к где  [c.488]

Такая система позволяет по программе, введенной в ЭВМ, осуществлять накопление результатов измерений распределений по пограничному слою как значений температур, полных и статических давлений, так и пар этих значений, измеренных синхронно, распределение температур поверхности пластины по ее длине и т. д. Все экспериментальные данные могут быть записаны во внешнюю память УВК и обработаны тем или иным образом, в частности могут быть найдены распределения осреднен-ных значений скорости, температуры и давления по толщине турбулентного пограничного слоя, распределение теплового потока от пластины по ее длине и т. д., причем результаты могут быть выданы на любые периферийные устройства УВК.  [c.62]


Подготовительные работы на скважине заключаются в установке подъемника и блок-баланса, сборке схем внешних соединений и проверке работы основных узлов измерительной схемы. При подготовке к работе вспомогательных устройств проверяют синхронность передачи (прокручивание ролика блок-баланса должно приводить к изменению показаний счетчиков глубины), сигнальные цепи и исправность переговорного устройства.  [c.131]

Вопросы комплексной автоматизации процессов производства в наши дни являются важнейшими. При решении их подразумевают, что в автоматической системе машин дополнительно осуществлена автоматизация процессов контроля, регулирования и блокировки всех операций производственного процесса при централизованном управлении. Примером подобного решения может служить автоматическая линия. В состав ее, кроме указанных средств, входит производственная цепочка из синхронно работающих автоматов с ритмично действующими автоматическими транспортными устройствами, автоматическими устройствами загрузки, закрепления, разгрузки и открепления.  [c.10]

Чтобы привести механизм из положения соосности в положение, показанное на рис. 15.8, а, необходимо повернуть вал 3 на угол а вокруг шарниров В, В, а чтобы привести механизм из положения соосности в положение, изображенное на рис. 15.8, б, следует повернуть вал 3 на угол а уже с помощью шарниров А, А. Таким образом, при вращении валов J я 3 крестовина 2 непрерывно покачивается на шарнирах А, А и В, В на величину угла а, образованного осями валов. Вследствие этого покачивания вектор мгновенной угловой скорости крестовины периодически изменяется за каждый оборот вала. По этой причине при равномерном вращении вала 1 со скоростью u)i ведомый вал 3 вращается неравномерно. Колебания скорости соз тем значительнее, чем больше угол а. Этот недостаток устранен в так называемых синхронных карданах, имеющих несколько иное устройство.  [c.383]

В качестве двигателей в машинах-автоматах используют управляемые (синхронные) и неуправляемые (асинхронные) электродвигатели, электромагниты, гидро- и пневмодвигатели с управляющими устройствами.  [c.425]

В приборе имеются индукционные преобразователи, включенные дифференциально и питающиеся от блока питания 3 (50 Гц). В преобразователи, представляющие собой катушки с намагничивающей и измерительной обмотками, помещают образец и контролируемую деталь. Для уравновешивания преобразователей при помещении в них идентичных изделий служит компенсирующее устройство 4. При этом разностная ЭДС подается на усилитель 5, на выходе которого через синхронные детекторы 6 п 7  [c.75]

Установка представляет собой ряд дефектоскопов, выходные сигналы которых непрерывно в определенном масштабе и синхронно со скоростью движения вагонов фиксируются на кинопленке и бумаге регистрирующих устройств. Регистрация на кинопленку производится в координатах время распространения ультразвуковых колебаний — длина пути. Пленка протягивается синхронным приводом, управляемым сельсин-преобразователем, жестко связанным с нетормозным колесом индукторной тележки вагона. Индикаторный блок предназначен для визуального контроля чувствительности и качества акустического контакта, а также для синхронизации работы схемы установки.  [c.336]

Непроста задача пуска ЭУ. Только некоторые ПЭ с ограниченными мощностными характеристиками допускают прямой пуск. У многих ПЭ (у тепловых двигателей и большинства ЭД) область превращения энергии не доходит до одной из координатных осей, и прямой пуск невозможен. Для их пуска создаются специальные пусковые характеристики иди вспомогательные устройства, например, короткозамкнутые обмотки в синхронных ЭД.  [c.92]

При воздействии блуждающих токов обычно приходится синхронно определять одновременно несколько величин, непрерывно меняющихся во времени. Для этой цели лучше всего подходят сдвоенные самопишущие устройства. Приборы с непрерывной записью кривой, имеющие измерительные механизмы с прямым показанием, для измерения потенциалов не могут быть использованы, поскольку вращающий момент измерительного механизма у них слишком мал, чтобы преодолеть сопротивление движению пера самописца по бумаге. Для регистрации потенциалов применяют либо самопишущие приборы с усилителями, либо самопишущие потенциометры. В самопишущих приборах с усилителями, как и в вольтметрах с усилителями, измерительный сигнал преобразуется в ток, подаваемый к измерительному механизму, который состоит из сельсинного двигателя с предварительным усилителем. Усилитель создает повышенный вращающий момент, чтобы при требуемом давлении прижатия пишущих наконечников было бы обеспечено время успокоения 0,5 с. Мощность, потребляемая самопишущими приборами с усилителем, составляет около 3 Вт. Технические характеристики самопишущих приборов приведены в табл. 3.2.  [c.98]


Для проведения исследований с использованием оптикомеханического способа считывания разработано устройство, внешний вид которого представлен на рис. 75 [36]. Радиографическую пленку помещают на прозрачный барабан, внутри которого вдоль образующей перемещается диафрагмированный источник света, просвечивающий участок пленки. Приемник света размещен вне барабана и перемещается синхронно с источником. При вращении барабана осуществляются сканирование всей площади пленки и отсчет координат площади считывания. Сигналы с приемника света через блоки преобразования поступают в ЭВМ Минск-22 . Обработка информации аналогична обработке, описанной в работе [35]. Однако способ считывания значительно изменяет программное обеспечение.  [c.128]

В современных высокопроизводительных плоскопечатных машинах подача листов в машину производится самонакладами, которые представляют собой специальные устройства, соединяющиеся с печатной машиной и работающие с ней синхронно. Наиболее распространенными современными самонакладами являются пневматические самонаклады, в которых верхние листы отделяются от стопы бумаги при помощи присосов, в которых в этот момент создается вакуум.  [c.325]

Станочные автоматические линии создаются, как правило, на базе синхронных транспортных устройств, т. е. с жесткой транспортной связью. Работа станков, узлов и механизмов в таких линиях сблокирована строго по функциональной циклограмме. Характерной особенностью таких сблокированных линий является то, что отказ одного элемента (механизма, детали, инструмента) приводит к отказу и останову всей линии в целом. Поэтому в линию встраивают обычно не более 10—12 станков.  [c.155]

Схема балансировочного станка более совершенного типа показана на рис. 310,6. Опоры 1 балансируемой детали 3 опираются на плоские пружины 2. Колебания опор передаются тягами 4 электрическим устройствам 5, в которых возникает ток. Напряжение этого тока пропорционально амплитудам колебаний опор. Ток от этих электрических устройств после усиления подводится к одной из обмоток ваттметра 6. По показанию ваттметра 6 судят о величине амплитуды, а следовательно, и овеличинедис-баланса. Другая обмотка ваттметра 6 получает ток от генератора 7 переменного тока, ротор которого вращается синхронно с балансируемой деталью и представляет собой двухполюсный магнит. Градуированный статор генератора можно поворачивать при помощи рукоятки 8 или специального маховичка во время вращен я детали. Положение дисбаланса детали определяется по углу поворота обмотки статора, определяемому по лимбу поворачиваемой рукояткой или маховичком при максимальном отклонении стрелки ваттметра. Современные балансировочные станки высокопроизводительны и позволяют балансировать до 60—80 деталей в час.  [c.513]

Устойчивость дуг переменного тока ниже, чем дуг постоянного тока. Это связано с тем, что при питании дуги с частотой 50 Гц дуга 100 раз в секунду гаснет и вновь возбуждается. Для повышения ста-,5ильности горения дуги в покрытия и флюсы вводят вещества ( соединения калия, кальция, цезия и др.), способствующие хоро- jTjen проводимости дугового промежутка. Применяют также спе-ц иальные устройства, называемые осцилляторами и генераторами Шпульсов, которые способствуют возбуждению дуги синхронно с частотой питающей сети.  [c.55]

В общем случае при неформальной постановке задача оптимизации ЭМУ включает в себя выбор онтималыюго типа об1 СКта (например, электрические машины постоянного тока с электромагнитным возбуждением и возбуждением от постоянных магнитов, асинхронные с короткозамкнутым и фазным ротором, синхронные и пр ), его конструктивной схемы (нормальное и обращенное, цилиндрическое и торцевое исполнение, способы охлаждения и передачи электрической энергии на вращающиеся части устройства, тин опор вращающихся частей и пр.), оптимизацию параметров объекта (геометрические размеры, обмоточные данные, характеристики электрических и магнитных материалов), а также поиск способов оптимального управления объектом (например, способов изменения напряжения и частоты питания) и, наконец, оптимизацию значений допусков па параметры.  [c.143]

Современные гироскопические приборы и системы представляют собой сложные электромеханические устройства, в конструкциях которых используются высокооборотные синхронные и асинхронные двигатели, безмомент-ные индуктивные чувствительные элементы, электронные, транзисторные и магнитные преобразователи и усилители, прецизионные сельсинные и потенциометрические дистанционные передачи, редукторные и безредукторные сервоприводы, электромагнитные моментные датчики, прецизионные специальные шариковые подшипники и другие виды прецизионных подвесов (поплавковые, воздушные, электростатические, электромагнитные и др.) и т. д Приборы и системы, действие которых основано использовании свойств гироскопа, называются гироскопическими.  [c.6]

СПДК могут работать только при строго синхронном движении поршней для этого применяют специальное устройство, состоящее или из зубчатых реек, связанных с поршнями и действующих на одну шестерню, или облегченный шатунно-кривошипный механизм.  [c.393]

Инфракрасные приборы, основанные на поглощении инфракрасных лучей, получили широкое применение в различных отраслях промышленности для определения концентрации окиси углерода (СО), двуокиси углерода (СО2), аммиака (NH.,) и других газов [16], Это объясняется тем, что в инфракрасной области спектра газы имеют весьма интенсивные и отличительные друг от друга, по положению в спектре, полосы поглощения. Инфракрасные лучи поглощают все газы, молекулы которых состоят не менее чем из двух различных атомов. Этим определяется широкий круг пробных веществ, которые можно использовать в процессе контроля герметичности изделий (закись азота, пары фреона, аммиак и др.). В зависимости от принципа действия луче-приемника инфракрасные "устройства делятся на несколько групп. На рис. 7 схематично показан оптико-акустиче-ский лучеприемиик 1, в котором находится газ, способный поглощать инфракрасные лучи. Окно 2 этого луче-приемника выполнено из материала, пропускающего инфракрасное излучение. Через это окно поступает поток инфракрасного излучения от источника 3, прерываемый с определенной частотой обтюратором 4, приводимым в действие синхронным двигателем 5. Вследствие этого газ будет периодически нагреваться за счёт поглощения энергии и в замкнутом объеме луче-приемника возникнут периодические колебания температуры, вызывающие колебания давления газа, которые преобразуются конденсаторным микрофоном 6 в электрический выходной сигнал.  [c.197]


С помощью линейных антенных устройств, Антенные устройства выполнены в виде линейки одиночных приемных и излучающих элементарных антенн, образующих строку кадра. На рис. 37 приведены [ ринципиальная схема 1акой антенны и ее расположение относительно объекта контроля. Вторую координату можно получить за счет перемещения антенных устройств относительно образца или наоборот. Принцип действия заключается в синхронном подключении строго ориентированных относительно друг друга излучающих и приемных каналов с помощью соответствующих коммутирующих устройств СВЧ.  [c.238]

Преобразователи н полюсные башмаки электромагнита прикреплены к ползунам, свободно перемещающимся в направляющих ротора вращающегося контрольного устройства. Ползуны синхронно перемещаются в радиальном направлении с помощью колеса, имеющего пазы, выполненные по профилю архимедовой спирали и сегментов, вмонтированных в ползуны.  [c.51]

Широкое применение электрическая энергия нашла в птицеводстве, главным образом в инкубации. Применение электроэнергии в инкубации позволяет создать синхронно действующий автоматический процесс поддерживания необходимой температуры с колебанием 0,1° С, влажности воздуха в пределах 2% и вентиляции. В итоге благодаря более ровному тепловому режиму и автоматическим устройствам для поворота яиц через каждые два часа выход цыплят в электроинкубаторе составляет 80—85% вместо обычных 65—70%, что дает несомненные экономические преимущества сельскому хозяйству. Электроинкубация дополняется электрообогревом цыплят в брудерах зонтичного типа с поддержанием ровной температуры, что резко сокращает отход молодняка.  [c.28]

Механизм подъема и опускания индентора состоит из смонтированного наТбоковой поверхности крышки рабочей камеры автоматического устройства, приводимого во вращение синхронным электродвигателем. Выдержка индентора на образце в нагруженном состоянии производится с помощью реле времени.  [c.161]

Привод механизма опускания и подъема индентора состоит из смонтированного на боковой плоскости крышки кулачкового валика 43, приводимого во вращение синхронным электродвигателем 44 типа СД-60. При повороте кулачок 43 надавливает на шток 42, сжимает сильфон и передает движение гибкому тросику 41. Рычаг 40 освобождает индентор, который под действием установленного груза опускается вниз на пружинах подвески. Если в этот момент индентор находится над образцом, то он вдавливается в выбранный ранее участок поверхности. При дальнейшем повороте кулачок 43 освобождает шток 42 и связанный с ним тросик, которые под действием пружины возвращаются в исходное состояние, одновременно подняв индентор с грузом. На кулачковом валике находится контактное устройство, связанное с электрической схемой, которая автоматически осуществляет циклы опускания и подъема индентора при нажатии расположенной на панели кнопки Накол , а также при вдавливании индентора заданную выдержку времени, заранее устанавливаемую на шкале реле 45 типа РВ-4.  [c.166]

Привнесенное в машиностроительную промышленность из ранее сформировавшихся смежных промышленных отраслей и примененное вначале для выполнения особо тяжелых и трудоемких подсобных работ, подъемно-транспортное оборудование вошло затем в основной комплекс производственных средств машиностроения наряду с технологическим и контрольно-измерительным оборудованием. Представленное ко времени становления этой отрасли тяжелой индустрии единичными конструкциями общего назначения, оно пополнялось в дальнейшем специализированными машинами и установками, постепенно вводившимися для обслуягивания межоперационной доставки и отдельных технологических процессов — на литейных участках, в окрасочных и сушильных камерах, в закалочных печах и пр. Исходные тенденции простого повышения силовых и скоростных характеристик независимо работающих механизмов прерывного действия позднее дополнялись в нем тенденциями совмещения раздельно выполнявшихся рабочих операций, перехода от применения только стационарных машин к применению более маневренных передвижных машин и, наконец, тенденциями преимущественного использования принципа непрерывности транспортного процесса. Когда же в ходе развития машиностроительной техники — но мере накопления элементов механизации и автоматизации в пределах еще обособленных цеховых участков и освоения массового поточного производства — на рубеже XIX и XX вв. все отчетливее стала определяться необходимость объединения технологических агрегатов в едином производственном потоке, именно подъемно-транспортное оборудование во многом способствовало формированию взаимосвязанной, синхронно действующей системы машин и устройств, войдя в эту систему автоматических линий, цехов и заводов как органически свойственное ей связующее звено.  [c.171]

В ЦРЛ решались многие задачи, связанные с осуш,ествлением новых разработок для промышленности. Сюда прен де всего относятся почти все основные разработки радиоприемных устройств. Особо в этой связи должны быть отмечены теоретические работы в области радиоприема В. И. Сифорова, разработка синхронных методов приема Е. Г. Момотом, работа по конструированию образцов длинноволновых и коротковолновых радиоприемников профессионального назначения (А. П. Сивере). В ЦРЛ вели свои исследования по нелинейной радиотехнике академики Л. И. Мандельштам и Н. Д. Папалекси. Здесь начинал свои работы по распространению радиоволн А. Н. Щукин, здесь же были проведены первые работы по стабилизации частоты коротковолновых передатчиков (М. С. Нейман). С именем ЦРЛ связаны многие работы по телевидению, инфракрасной технике, электроакустике, гидроакустике и др. В ЦРЛ проводились работы в области ультракоротких волн (В. И. Калинин), первые испытания радиолокационных станций (Ю. К. Коровин) и др.  [c.360]

Наиболее простыми техническими средствами обнаружения самолетоБ в воздухе являлись звукоулавливатели, начало использования которые относится еще ко времени первой мировой войны. Дальнейшим их развитием были звукоулавливатели-прожекторы, т. е. звукоулавливатели, синхронно связанные с прожекторами (система Прожзвук ). Они поступили па вооружение войск ПВО в 1932 г. Однако все эти устройства обладали рядом суще ственных недостатков. Дальность действия их была мала, для работы требовались благоприятные метеорологические условия, они могли обнаруживат . лишь одиночные самолеты. И дая е при этих условиях успешность освещения самолета лучом прожектора не превышала 50—60%.  [c.368]

Блок формирования машинного слова предназначен для преобразования тактовых импульсов системы точного времени в сигналы формирования машинного слова и состоит из четырехразрядного счетчика тактов машинного слова и дешифратора. Состояние дешифратора также фиксируется светодиодами на передней панели устройства. Такты формирования машинного слова регламентируют синхронную работу как внешних, так и собственных устройств транслятора информации. Прием информации в регистр может происходить только в определенные промежутки времени, так же как и перекодирование информации или передача ее на ЦВМ. Первая из указанных операций принципиально необходима как для кодирования информации в аналого-цифровом преобразователе, так и для приема результатов измерений в регистр в определенное время. Поэтому время, отводимое на прием кода, должно быть не меньше времени, указанного в технических условиях на аналого-цифровой преобразователь. Первые два такта системы точного времени отводятся для выполнения этих двух операций. Состояние дешифратора в этих двух положениях индицируется светодиодами, вынесенными за верхнюю линию индикаторов состояния регистра. Каждым 3-м тактом осуш ествляется выдача сигнала, эквивалентного служебной пробивке —8. Для этого сигнал 3-го такта подается на шину записи —8 блока формирования машинного слова. Как указывалось выше, с 4-го по 15-й такт производится съем информации с регистра. На 16-м такте подается сигнал, эквивалентный пробивке Запись . Этим заканчивается формирование машинного слова.  [c.174]


Непосредственное слежение за изменением напряжений может осуществляться с помощью устройств, предназначенных для программных испытаний, однако в весьма ограниченных масштабах в связи с необходимостью синхронной работы возбудителя и программирующего устройства. Кулачковые механизмы также не могут быть рекомендованы, так как их применение в значительной степени снижает производительность оборудования, и, что очень существенно, с помощью вращающегося кулачка можно воспроизвести только один какой-либо закон изменения напряжений и лишь с малым числом экстремумов в одном периоде. Поэтому нашел распространение второй метод воспроизведения бигар ионических нагрузок— возбуждение и суммирование синусоидальных составляющих. Этот метод был положен в основу создания первой бигармониче-ской машины для испытания на усталость материалов при двухчастотном нагружении с соотношением частот гармонических составляющих 2 1 3 1 и 3 2 [3].  [c.132]

Описанное устройство работает следующим образом. Свет от осветителя 5 направляется на экран 4, а затем через волоконные световоды освещает всю поверхность рабочей части испытываемого объекта 1. Отраженный от объекта свет направляется по тем же световодам, передавая изображение рабочей части испытываемого объекта на экран. Получив таким образом на экране развернутое изображение поверхности рабочей части объекта 1, можно фотографировать его непосредственно с экрана или после предварительного увеличения с помощью микроскопа б с фотонасадкой 7. Полезное оптическое увеличение пока не превышает ХЗО—40 из-за малой разрешающей способности волоконных световодов [5, 6]. Освещать экран, а следовательно, и рабочую часть испытываемого объекта желательно с помощью стробоскопа, работающего синхронно с частотой нагружения об-  [c.193]

Для измерения коэффициентов корреляции R при нулевой временной задержке и косинуса угла сдвига фаз между вибрационными процессами используются рассмотренные уже двухканальные синхронные и синфазные анализирующие устройства (фильтры измерителя колебательной мощности, двухканальный гетеродинный анализатор на базе анализаторов типа С53, устройства типа 2020 фирмы Брюль и Кьер ) совместно с умножающим устройством, фазочувствительным вольтметром типа ВФ-1 или коррелятором фирмы Диза типа 55Д70. При отсутствии фазосдвигающей цепи в измерительных трактах осуществляется измерение вещественной части коэффициента корреляции и косинуса угла сдвига фаз. Поворот фазы на 90° позволяет получить значения мнимой части коэффициента корреляции 1ш и синуса угла сдвига фаз между процессами. При синусоидальных процессах показания умножителя, фазочувствительного вольтметра или коррелятора пропорциональны косинусу угла сдвига фаз, а при стационарном случайном характере в полосе частот — коэффициенту корреляции между исследуемыми процессами. Для получения непосредственного отсчета R или os а, например на шкале коррелятора, необходимо (при автоматических измерениях) использовать блоки автоматической регулировки усиления (АРУ) с целью поддержания постоянной величины поступающих на коррелятор сигналов.  [c.437]


Смотреть страницы где упоминается термин Синхронные Устройство : [c.80]    [c.109]    [c.3]    [c.421]    [c.214]    [c.138]    [c.93]    [c.26]    [c.154]    [c.31]    [c.115]    [c.14]    [c.110]    [c.217]    [c.58]   
Справочник машиностроителя Том 2 (1955) -- [ c.404 ]

Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.485 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте