Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Реактивные паровые турбины

РЕАКТИВНЫЕ ПАРОВЫЕ ТУРБИНЫ  [c.346]

Фиг. 4. Схема проточной части реактивной паровой турбины. Фиг. 4. Схема <a href="/info/445445">проточной части реактивной паровой</a> турбины.

Рис. 66—III. Тепловой процесс в ступени реактивной паровой турбины Рис. 66—III. <a href="/info/319415">Тепловой процесс</a> в <a href="/info/122043">ступени реактивной</a> паровой турбины
Рис, 13—III. Профили направляющих и рабочих лопаток реактивной паровой турбины  [c.213]

I4-III. РЕАКТИВНЫЕ ПАРОВЫЕ ТУРБИНЫ  [c.232]

III. РАДИАЛЬНЫЕ РЕАКТИВНЫЕ ПАРОВЫЕ ТУРБИНЫ  [c.235]

Рис. 56—III. Способ крепления рабочих лопаток у реактивной паровой турбины Рис. 56—III. Способ крепления рабочих лопаток у реактивной паровой турбины
Принцип действия одноступенчатой газовой турбины ) не отличается от принципа действия одноступенчатой реактивной паровой турбины. Расширение газа происходит не только в направляющих соплах, но и на рабочих лопатках. Абсолютная скорость С] на рабочих лопатках убывает до Сз, а относительная от хю возрастает до Шг.  [c.249]

Отличительным признаком реактивной турбины является преобразование потенциальной энергии в кинетическую не только в соплах, но и на рабочих лопатках. При этом давление газа непрерывно уменьшается и в соплах и в лопатках турбины. Благодаря тому, что относительная скорость движения газа по лопаткам турбины возрастает при вытекании газа из лопаток, создаётся добавочный импульс на рабочее колесо турбины, который и определяет собой реактивное воздействие газа на лопатки (см. Реактивные паровые турбины ).  [c.436]

В технике имеется большая группа машин, в которых работа производится за счет внешней кинетической энергии рабочего тела паровые турбины, газовые турбины, реактивные двигатели, ракеты и др.  [c.197]

На рис. IX. 1 показаны четыре типа профилей. Форма первого профиля, относительно нетолстого и мало изогнутого, с закругленной передней кромкой, типична для крыльев и винтов дозвуковых самолетов, для компрессорных и гидротурбинных лопаток, второго профиля с острыми передними и задними кромками, — для крыльев сверхзвуковых самолетов форма третьего и четвертого профилей, довольно толстых и достаточно изогнутых — для лопаток реактивных и активных ступеней паровых турбин.  [c.201]


При проектировании изделий, работающих в условиях повышенных температур, конструктор встречается с задачами различного характера в зависимости от назначения и условий эксплуатации изделий. Так, элементы стационарных паровых турбин рассчитываются на сроки службы порядка десяти и более лет, соответственно напряжения и температуры должны быть не слишком высоки. Сопло реактивного двигателя ракеты подвергается действию весьма высоких температур и больших давлений, но продолжительность работы двигателя составляет несколько минут. Соответственно основные механические модели и расчетные методы в этих двух крайних случаях оказываются неодинаковыми, хотя общие принципы построения теории остаются теми же. Поэто-му для начала нам будет удобно  [c.615]

Степень реактивности р, окружная скорость на середине лопатки и, относительная скорость входа газа на лопатки Wj, относительные скорости выхода газа из канала между рабочими лопатками в активной и реактивной ступенях ц>2, абсолютная скорость выхода газа из канала между рабочими лопатками j, угол входа газа на рабочую лопатку угол наклона абсолютной скорости выхода газа из канала между рабочими лопатками 2 и работа 1 кг газа определяются по формулам для паровых турбин (см. 3.1).  [c.146]

Паровые турбины начали строить одновременно в Швеции и Англии. В Швеции в 1883 г. инженер Лаваль взял патент, а в 1890 г. построил одноступенчатую активную турбину мощностью 3,7 кВт при частоте вращения ротора 417 Английский инженер Парсонс в 1884 г. построил многоступенчатую реактивную турбину мощностью 7,4 кВт, с частотой вращения ротора 280 с . Обе турбины приводили в действие генераторы электрической энергии. Американский инженер Кертис в 1896 г. сконструировал и предложил строить многоступенчатые активные турбины со ступенями давления.  [c.23]

В активных паровых турбинах максимальные допускаемые напряжения изгиба равны 35—38 МПа при полном подводе пара и 15—19 МПа — при частичном, в реактивных — до 60 МПа 26]. В лопатках К1 Д [<7и ] = 60 МПа (до 120 МПа в авиационных конструкциях), в лопатках КВД [ст ] = 170 МПа. В лопатках газовых турбин максимальные изгибные напряжения 50—80 МПа (до 150 МПа в авиационных конструкциях) [6, 36].  [c.278]

В зависимости от характера преобразования потенциальной энергии газа в кинетическую энергию струи различают активные, реактивные и активно-реактивные турбины. В газовых турбинах при движении продуктов сгорания по каналам имеются потери тепла. Рассмотрим рабочий процесс и определим потери тепла в газовой турбине (приведенные ниже формулы применимы и для паровых турбин).  [c.213]

В 1884 г. англичанин Ч. Парсонс патентует паровую реактивную многоступенчатую турбину. В 1889 г. шведский инженер Г. Лаваль получает в Англии патент на расширяющееся сопло, которое позволяет в отличие от суживающегося превращать в кинетическую энергию любой перепад давлений пара. В 1891 г. паротурбинная установка снабжается конденсатором, что делает ее более экономичной, чем поршневые машины, сохраняя за ней преимущество в огромной удельной мощности. И она становится основным двигателем электростанций.  [c.96]

Разнообразие преобразователей энергии и энергетических установок, как видно на морфологической карте, невелико — большинство из них уже эксплуатируется паровые турбины с электрогенераторами — на электростанциях, газотурбинные и реактивные двигатели — в авиации, поршневые двигатели внутреннего сгорания — на автомобилях, тракторах, все перечисленные — на судах, локомотивах и других объектах в зависимости от назначения.  [c.143]

Идея паротурбинного двигателя зародилась в глубокой древности [27]. Однако проблема паровой турбины получила разрешение лишь в 80-х годах прошлого столетия. В 1883 г. появилась одноступенчатая активная турбина Лаваля с чрезвычайно высокой скоростью вращения (до 30000 об/мин), в 1884 г. —многоступенчатая реактивная турбина Парсонса, обладавшая крупными преимуществами по сравнению с паровой машиной как мошный быстроходный двигатель, не имеющий поступательно движущихся частей и более экономичный в отношении расхода топлива. На появившихся крупных электростанциях мощные паровые турбины очень скоро вытеснили не только паровую машину, но и двигатели внутреннего сгорания вследствие чрезмерно больших размеров последних и дороговизны жидкого топлива.  [c.133]


В 80—90-х годах ведутся работы по созданию и практическому использованию многоступенчатых реактивных турбин. Изобретатель турбины Ч. Парсонс (1884 г.) создал агрегат, который можно считать предшественником турбогенератора. К концу 90-х годов машиностроительный завод Парсонса освоил выпуск надежных в эксплуатации паровых турбин разного назначения. Этим было положено начало последующему крупному росту турбостроения в Англии, Германии, США, Франции и других странах.  [c.26]

При расчете паровых турбин на режимах, отличающихся от номинальных, широко используются закон конуса Стодолы и метод расчета с конца (см. приложение III). Формула Стодолы обеспечивает достаточную точность при таких отклонениях от расчетного режима, когда изменения степени реактивности, коэффициентов расхода и потерь энергии невелики и ими можно пренебречь [53]. Однако формула Стодолы применяется и при больших отклонениях от номинального режима, вплоть до режимов холостого хода. Расчет ЦНД при малых расходах с использованием конуса Стодолы дает погрешность из-за существенного изменения условий работы не только последней, но и предыдущих ступеней ЦНД. Сравнение опытных значений давлений перед ЦНД [79] в диапазоне массовых расходов (0,023 -0,044) G om с расчетом по формуле Стодолы дает погрешность 10—15 % опытного значения давления. Такая погрешность является удовлетворительной для приближенной оценки работы всего ЦНД. При расчете же отдельных ступеней ЦНД, особенно последних, погрешность может значительно возрасти и выйти за допустимые пределы даже для оценочных расчетов.  [c.183]

В 80-х годах XIX в. начинается бурное развитие паровых турбин различных типов активного и реактивного.  [c.17]

Покажем, что и реактивная сила пренебрежимо мала по сравнению с аэродинамической. Для этого оценим порядок величины Рм/Ра- Подставим в формулу (И.45) численные значения физических величин X, fi" и г, характерных для части низкого давления паровых турбин. При этом в случае глубокого переохлаждения АТ = 50° получим  [c.55]

В современных мош,ных паровых турбинах применяются ступени с лопатками очень большой относительной длины и с высокой степенью реактивности вблизи периферийных сечений (Qj, > 0,5), что связано со снижением Wy lu.  [c.89]

В части низкого давления мощных паровых турбин применяются очень высокие окружные скорости и соответственно большие перепады энтальпий на каждую ступень. Степень реактивности на средних диаметрах и у периферии ступеней обычно велика. Зона Вильсона не всегда достигается в направляющем аппарате первой ступени, особенно у периферии.  [c.132]

Тип и число ступеней. Выбор кинематической схемы ступеней предопределяет коренные конструктивные и технологические особенности турбины. Поэтому, естественно, фирмы, имеющие богатый опыт конструирования, производства и эксплуатации турбин активного или реактивного типа, обычно придерживаются этого принятого принципиального направления. Экономически это вполне оправдано. Вместе с тем основы кинематики потока в турбинах были глубоко изучены еще в начальный период развития паровых турбин, и тогда уже была возможность сделать обоснованный выбор типа турбин с учетом особенностей их производства. Мировая практика турбиностроения показала, что некоторый консерватизм в построении принципиальной кинематической схемы проточных частей турбин способствовал накоплению опыта и, как следствие,  [c.29]

По инициативе главного инженера города Франкфурта в Германии Линдлея для электростанции в городе Эльберфельде были заказаны две турбины Парсонса. Испытания этих турбин производились с особой тщательностью, для их проведения были приглашены авторитетные специалисты. К 1890 году испытания турбин были закончены. Результаты испытаний однозначно продемонстрировали преимущества паровых турбин перед паровыми машинами. С тех пор началось быстрое вытеснение паровых машин с электростанций и повсеместная замена их паровыми турбинами. И теперь паровые турбины являются основными источниками энергии в большой энергетике около 80 % получаемой в мире энергии производится с их помощью. Конечно, они очень изменились, но принципы многоступенчатых реактивных паровых турбин, предложенные Парсонсом, остались неизменными.  [c.142]

Положение кардинально изменилось лишь тогда, когда в качестве первичных двигателей стали применять быстроходные паровые турбины и на их основе возник совершенно новый тип синхронных генераторов. В 1884 г. Ч. Парсонс изобрел реактивную паровую турбину, предназначенную специально для электростанции. Для того чтобы этот быстроходный двигатель насадить без промежуточного редуктора на один вал с электрическим генератором, имевшим значительно меньшую оптимальную скорость, Парсонс разработал многоступенчатую турбину. Дальнейшее совершенствование турбины Парсонса шло неразрывно с развитием генераторов возник единый агрегат — турбогенератор [2, с. 60—62]. Некоторое время создавались турбогенераторы постоянного тока, предельная мощность которых достигла 2000 кВт при 1500 об/мин. Постепенно они были вытеснены турбогенераторами, вырабатывавшими переменный ток. Большие скорости вращения сказались на конструктивном выполнении обмоток генераторов первоначально роторы строили с явно выраженными полюсами, но возросшая механическая нагрузка и большие потери на трение о воздух заставили перейти к распределенной обмотке возбуждения. Уже в 90-х годах турбина Парсонса получила широкое распространение в Англии, а ее применение на Европейском континенте несколько задержалось, несмотря на то что в 1895 г. фирма Westinghous , а годом позже фирма Brown, Boveri С° прибрели право на строительство турбин Парсонса [36, с. 62]. Перелом произошел в 1899 г., когда Парсонс выполнил заказ на две крупные по тому времени турбины для приво-  [c.81]


У самых гениальны.ч мыслителен, ученых и инженеров античного мира, даже таких, как Архимед (ок. 287—212 до н. э.), пет и намека на идею об универсальном двигателе. Не двинулся в этом направлении и такой инженер, как Герои Александрийский (ок. 1 в.), несмотря на то что он знал намного больше, чем средневековые мыслители, Даже движущая сила нагретого воздуха и водяного пара была ему хорошо известна. Его эолопил (рис. 1.1) —прообраз реактивной паровой турбины — был только интересной игрушкой, так же как п устройство, открывавшее двери храма (рис. 1.2), Мысль  [c.16]

Рис. 15—III. Утечка пара в ступеяи реактивной паровой турбины Рис. 15—III. Утечка пара в ступеяи реактивной паровой турбины
Турбины строятся аксиальными, рабочее тело в которых движется вдоль вала (см. рис. 11.20), и радиальными, направление потока в которых перпендикулярно валу. На рис. 11.37 представлена схема радиальной реактивной паровой турбины фирмы Юнгстрем . На два вала 2 насажены диски 4 с лопатками 5, закрепленными кольцевыми рядами перпендикулярно плоскости  [c.179]

Реактивные паровые турбины всегда изготовляются многоступенчатыми. На фиг. 237 представлен разрез трехцилиндровой реактивной турбины мощностью 150 тыс. кет на давление пара ПО ата и температуру 535 С. Цилиндр высокого давления цельнокованый, только в хвостовой части на вал насажено две широкие обэймы, на  [c.383]

Идея паровой турбины имеет очень давнее происхождение. Известно, что около 120 лег до нашей эры Героном старшим, из Александрии, был описан прототип реактивной паровой турбины. Много веков спустя, в 1629 г., Бранка дал описание своей машины, являющейся прототипом активной турбины . Одна-  [c.8]

Паровые турбины. На конструкцию паровой турбины влияют начальные параметры пара (до- и сверхкритические), режим ее работы (базовый, пиковый или полупиковый), конечная влажность пара, особенности технологии изготовления и другие факторы. Турбины делят по внутренним конструктивным признакам на активные и реактивные. Для активных турбин характерно наличие перегоро-  [c.189]

Роторы паровых турбин могут бытъ дисковыми (рис. 4.11,й) или барабанными (рис. 4.11,6). Дисковая конструкция характерна для турбин активного типа, барабанная - реактивного.  [c.189]

Конструкции промышленных паровых турбин начали создаваться в конце XIX — начале XX вв. на основе работ шведского инженера Г. Лаваля (1845—1913 гг.), построившего первую промышленную активную паровую турбину, и англичанина Ч. Парсонса (1854—1931 гг.), занимавшегося реактивными турбинами. Во Франции О. Рато (1863— 1930 гг.) разработал конструкцию активных турбин со ступенями давлений, которые в дальнейшем были усовершенствованы швейцарским инженером Целли. Американский инженер Кертис (1860—1953 гг.) построил активную турбину со ступенями скорости. Значительный вклад в разработку теории процессов, протекающих в паровой турбине, и в практическое турбостроение внес чехословацкий ученый А. Стодола (1859—1942гг.). Успешную и плодотвор ую работу по развитию строи-  [c.325]

По характеру рабочего процесса различают активные и реактивные лопатки турбин и компрессоров (центробежных и осевых) по форме — лопатки с постоянным по длине и переменным профилем (закрученные или винтовые) по способу сопряжения друг с другом — лопатки с утолщ,енным хвостом и лопатки с промежуточными телами по роду рабочего тела — лопатки паровых турбин, газовых турбин и компрессоров по температурному режиму — лопатки неохлаждаемые и охлаждаемые по способу изготовления —  [c.27]

Формула (215) показывает, что скорость звука в газе, т. е. скорость распространения упругих деформаций, зависит от при-)оды и состояния газа и является прямой функцией температуры. 1роцессы, связанные с большей скоростью движения газов (паров) по каналам, в которых происходит превращение потенциальной энергии сжатых газов в кинетическую энергию, широко применяются в современной технике в газовых и паровых турбинах, соплах реактивных и ракетных двигателей и др. Большими считаются скорости, близкие, равные или превышающие скорости звука в газе. Например, скорость звука в воздухе при 15° С составляет около 340 м/с. При движении с такими скоростями в потоке газа происходят большие изменения давления, температуры и плотности.  [c.67]

Реактивность ступени явотяется одним из наиболее важных показателей, определяющих экономичность и надежность ступени. Обычно проектирование ступени начинается с выбора степени реакции у корня. По этому вопросу нет единой точки зрения. Так, для паровой турбины К-300-240 ХТГЗ степень реакции у корня последней ступени при номинальном режиме отрицательная ( рк=—0,20) в последних ступенях турбин К-300-240 ЛМЗ, Т-250-240 ТМЗ и фирмы Хитати (Япония) — положительная. Так как при наличии диффузорности канала рабочей решетки создаются условия, благоприятные для возникновения отрывного течения, то определяющим соображением при выборе степени реакции должно быть стремление обеспечить конфузорность каналов. Конфузорность межлопаточного канала должна возрастать с ростом  [c.13]

Наибольший перепад давления имеет место в первой ступени с двухвенечным диском Кертиса. От второй до последней ступени перепады давлений постепенно уменьшаются. Так, например, в активной конденсационной турбине мощностью 5 600 кет и в активно-реактивной конденсационной турбине мощностью 6 600 кет на параметры пара ро = 28 кгс1см и о = 400°С перепад давления на двухвенечную регулирующую ступень составляет около 18 кгс1см . Перепады давления на остальных стуиенях паровой турбины изменяются от 2,7 до  [c.41]


Смотреть страницы где упоминается термин Реактивные паровые турбины : [c.189]    [c.37]    [c.21]    [c.189]    [c.225]    [c.30]   
Смотреть главы в:

Теплотехника  -> Реактивные паровые турбины

Теплотехника  -> Реактивные паровые турбины

Теплотехника 1963  -> Реактивные паровые турбины



ПОИСК



Радиальные реактивные паровые турбины

Реактивность

Реактивность турбины

Турбина паровая

Турбина реактивная

Турбины Паровые турбины

Турбины паровые

Турбины реактивные



© 2025 Mash-xxl.info Реклама на сайте