Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Стержни Теория общая — Решения приближенные

Основная сложность при решении уравнений заключается в том, что задачи статики стержней относятся к двухточечным краевым задачам, когда решение должно удовлетворять определенным условиям в начале и в конце интервала интегрирования, в отличие от одноточечных краевых задач — задач Коши, когда все условия, которым должно удовлетворять решение, известны в начале интервала интегрирования. Поэтому хорошо разработанные методы решения систем дифференциальных линейных (и нелинейных) уравнений для одноточечных задач использовать для решения двухточечных задач в общем случае нельзя. В настоящее время имеется ряд методов численного решения линейных двухточечных задач (имея в виду стержни), которые получили распространение в расчетной практике метод начальных параметров, метод прогонки [2], метод конечных элементов [15]. Точное аналитическое решение линейных уравнений равновесия стержня, например (1.112) — (1.115), возможно только для случая, когда элементы матрицы Ах— постоянные числа [этот случай будет рассмотрен в 5.2, где изложены теория и методы расчета винтовых стержней (цилиндрических пружин)]. Для уравнений с переменными коэффициентами возможны только численные или приближенные методы решения.  [c.61]


Мы начнем с рассмотрения общих уравнений для трехмерной задачи в прямоугольных координатах и простейших решений, отвечающих простейшим типам волн ). Приближенные представления волновых движений в частных случаях, например волны растяжения в стержнях, будут рассмотрены позже, когда в нашем распоряжении уже будет общая теория, позволяющая разъяснить природу сделанных допущений.  [c.489]

В задачах статики стержневых систем матричный метод перемещений приводит к точному (в рамках технической теории бруса) решению. В случае динамического нагружения точное решение невозможно при указанном подходе даже для стержневых систем. Желаемая точность может быть достигнута путем разбиения стержней на более короткие участки, в пределах которых применяется приближенная аппроксимация типа (9.2), но при этом исчезает различие между стержневыми и непрерывными системами. Следовательно, в динамических задачах целесообразно рассматривать стержневые системы с общих позиций метода конечных элементов, как мы и будем поступать в дальнейшем.  [c.330]

При исследовании малых прогибов упругих стержней показано, как можно ввести поперечный сдвиг в дифференциальное уравнение равновесия этой теории. Излагается расчет балок на упругом основании и важная для судостроения задача, поставленная И. Г. Бубновым, о расчете перекрестных балок. Рассмотрен продольно-поперечный изгиб балок, приводится точное, а также приближенное, развитое автором, решение в тригонометрических рядах. Дается систематизированное изложение теории выпучивания прямых сплошных стержней, полос, круговых колец, двутавровых балок, устойчивости вала при кручении. Уточняется известная задача Ф. С. Ясинского о расчете на устойчивость пояса открытых мостов. Приводятся точные и приближенные решения этой задачи энергетическим методом, данные самим автором. Особенно ценны результаты, относящиеся к устойчивости плоской формы изгиба полос и двутавровых балок. Теория изгиба, кручения и устойчивости двутавровых балок была разработана автором в 1905—1906 годах и оказалась основополагающим исследованием для последующих разработок в области расчета и общей теории тонкостенных стержней. Автор приводит компактные формулы для расчета критических сил.  [c.6]

В развитии теории устойчивости пластин значительным этапом явились работы С. П. Тимошенко [30] — [32]. Применение энергетического критерия устойчивости позволило успешно рассмотреть ряд задач, непосредственно относящихся к устойчивости стенок в металлических конструкциях. Некоторые задачи, возникшие из практики судостроения, рассмотрены в работах И. Г. Бубнова [7]. Им был предложен [8] весьма общий приближенный метод решения задач устойчивости упругих систем. Независимо от И. Г. Бубнова, несколько позже, аналогичный метод был предложен и применен к решению ряда задач устойчивости стержней и пластин Б. Г. Галеркиным [10].  [c.964]


По схеме построения и точности результатов теория оболочек, основанная на использовании гипотез (Кирхгофа—Лява), аналогична технической теории стержней в сопротивлении материалов, вследствие чего некоторые авторы предлагают такую теорию оболочек называть тоже технической теорией (В. В. Новожилов) или теорией оболочек первого приближения (В. Т. Койтер). Вместе с тем аналогия между технической теорией стержней в сопротивлении материалов и теорией оболочек, основанной на гипотезах Кирхгофа—Лява, нарушается, так как последняя содержит ряд упрощенных вариантов (безмоментная теория, Полубезмоментная теория, теория пологих оболочек), в то время как в теории стержней подобных вариантов нет. Вследствие этого отдельные исследователи считают, что логичнее технической теорией оболочек называть отмеченные выше различные упрощенные варианты общей теории, а неупрощенный вариант — просто теорией оболочек. По-видимому, обе точки зрения имеют право на существование. Однако нам представляется все же, что точка зрения В. В. Новожилова более последовательна. Именно такая терминология и принята в настоящей книге. При этом, конечно, надо учитывать, что имеются более точные теории оболочек, чем техническая, занимающие в данном отношении промежуточное положение между последней и решением трехмерной задачи теории сред, в частности теории упругости. Однако такие теории не находят широкого применения.  [c.11]

Рассматривается развитие метода малого параметра применительно к упруго-пластическим задачам теории идеальной пластичности. В настоящее время имеется сравнительно небольшое число точных и приближенных решений упруго-пластических задач теории идеальной пластичности, поскольку возникаюш,ие здесь математические трудности весьма велики. Впервые задачу о распространении пластической области от выреза, вызываюш,его концентрацию напряжений в сечении скручиваемого стержня, решил Треффтц [1]. Он рассматривал уголковый контур и при решении задачи использовал метод конформного отображения. Несколько ранее Надаи [2] была предложена песчаная аналогия, позволившая в соединении с мембранной аналогией Прандтля осуш ествить моделирование задач упруго-пластического кручения стержней. В. В. Соколовский [3] рассмотрел задачу об упруго-пластическом кручении стержня овального сечения ряд решений задач о кручении стержней полигонального сечения был дан Л. А. Галиным [4, 5]. Большая литература посвящена одномерным упруго-пластическим задачам отметим работы [2, 3, 6-8]. Точное решение неодномерной задачи о двуосном растяжении толстой пластины с круговым отверстием было дано Л. А. Галиным [9], использовавшим то обстоятельство, что функция напряжений в пластической области является бигармониче-ской. Там же Л. А. Галин рассмотрел случай более общих условий на бесконечности. Впоследствии Г. Н. Савин и О. С. Парасюк [10-12 рассмотрели некоторые другие задачи об образовании пластических областей вокруг круглых отверстий.  [c.189]

Теория старения 94, 98, 99, 106 Теория стержней естественно закрученных Кирхгофа—Клебша 443—446 ——- общая — Решения приближенные 448—454 — Решения точные 446, 447  [c.829]

С другой стороны, при расчете цилиндрических пружин (как для a.o= onst, так и для ао onst) имеют место два типа задач 1) статика цилиндрических пружин, когда изменения параметров (AQi, Аа, Ro, ДЯ), характеризующих геометрию винтового стержня, можно считать малыми, — линейная теория цилиндрических пружин-, 2) когда изменения Qj, ао, Ro и Н при нагружении считать малыми нельзя — нелинейная теория цилиндрических пружин. В первом случае (линейная теория) для решения задач статики винтового стержня при любых вариантах нагружения [симметричного (см. рис. В.7,а) или несимметричного (см. рис. В.7,6)] можно воспользоваться уравнениями нулевого приближения (1.107) —(1.111) (в базисе ею ), полученными в 1.4. Во втором случае (нелинейная теория) следует использовать общие нелинейные уравнения, полученные в 1.3.  [c.198]


Из условия стационарности полной потенциальной энергии (65 — 0) можно найти равновесные состояния изогнутого стержня и, исследуя знак второй вариации установить, какие из равновесных состояний устойчивы. Пока на значения перемещений и углов поворота не наложено никаких ограничений, приведенные зависимости, описывающие изгиб стержней с нерастяжимой осью, являются точными (в рамках теории гибких упругих стержней). Для ряда частных случаев нелинейное дифференциальное уравнение, к которому сводится задача изгиба стержня при конечных перемещениях, допускает аналитическое решение. В общем случае это нелинейное уравнение можно с любой степенью точности решить численно. Сейчас мы с помощью метода Рэлея—Ритца найдем приближенное аналитическое решение, позволяющее наглядно описать закритическое поведение любого произвольно нагруженного стержня при конечных, но не слишком больших прогибах.  [c.208]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]

Задачи устойчивости типичны для тонких и тонкостенных тел. Решения этих задач для стержней, пластин и оболочек строятся обычно на основе приближенных уравнений, в которых используются некоторые кинематические и динамические гипотезы. Имеется несколько путей для получения этих уравнений. Первый, наиболее ранний способ состоит в непосредственном рассмотрении форм движения (равновесия), смежных с невозмущенным. При этом ищется некоторая приведенная нагрузка, которая вводится в уравнение невозмущенного движения. Все рассуждения носят наглядный характер однако в достаточно сложных задачах эта наглядность оказывается обманчивой. Другой путь состоит в использовании нелинейных уравнений соответствующих прикладных теорий. Линеаризуя последние в окрестности невозмущенного движения, получим искомые уравнения. В теории оболочек этот путь использовался X. М. Муштари (1939), Н. А. Алумяэ (1949), X. М. Муштари и К. 3. Галимовым (1957), Н. А. Кильчевским (1963), В. М. Даревским (1963) и другими авторами. Однако в нелинейной теории имеется еще меньше единства взглядов на то, как должны записываться основные уравнения. Следо вательно, идя по этому пути, мы лишь смещаем все трудности в другую, еще менее согласованную область. Третий путь состоит в использовании общих уравнений теории упругой устойчивости (В. В. Новожилов, 1940, 1948). Метод, основанный на соответствующем вариационном принципе, был применен  [c.332]

Введение. Кроме задали о неразрэзной балке существует много физических и технических задач, которые можно трактовать, как задачи о тонких, длинны с стержнях, и которые в этом смысле допускают приближенные решения. В этой главе мы займемся общей теорией подобных тел, одновременно подготовляя приложения этой теории, которые будут даны в следующих главах. Новое и особенное, что содержится в этой теории, сводится к тому, что взаимные перемещения частей тонкого, длинного етержня здесь, вообще говоря, не будут малы. Но деформация одновременно во всех частях стержня настолько мала, что применение математической теории уПругости все же возможно. Это обстоятельство делает необходимым некоторое специа ьное. кинематическое исследование, дополняющее общий анализ деформации, изл0женный в гл. I.  [c.398]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]



Смотреть страницы где упоминается термин Стержни Теория общая — Решения приближенные : [c.10]    [c.348]    [c.509]   
Прочность, устойчивость, колебания Том 1 (1968) -- [ c.448 , c.454 ]



ПОИСК



Приближенная теория

Решения приближенные

Теория стержней естественно общая — Решения приближенные 448—454 — Решения точны



© 2025 Mash-xxl.info Реклама на сайте