Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость стержневая

Течение идеальной жидкости в прямолинейном канале характеризуется постоянной по сечению скоростью (стержневое течение). Если число Рг стремится к нулю, то с ростом числа Re реальное число Nu должно приближаться к таковому для стержневого течения. Для конечных чисел Рг в стержневой модели можно условно учитывать турбулентный перенос тепла, заменяя величину к на к + к , где выражается как функция чисел Ре, Рг и поперечной координаты у.  [c.90]


При уменьшении частоты колебаний в цилиндре данного радиуса фазовая и групповая скорости продольной волны стремятся к общему пределу — фазовой скорости стержневых волн с = У Е/р.  [c.428]

Суммирование должно быть распространено на однократный пробег пятна по окружности, причем А . представляет собой малый интервал времени, в течение которого скорость движения может быть принята постоянной. Мгновенные скорости V. зависят от величины тока, который оказывается сосредоточенным в пределах того или иного стержневого пятна. Можно принять, что значение скорости изменяется пропорционально величине этого тока. В пределах стержневых пятен ток может изменяться от некоторого максимального значения приблизительно до половинного значения. Из этого следует, что мгновенные скорости стержневых пятен должны быть заключены в пределах  [c.268]

Таким образом, при взаимодействии закрученной струи со сносящим потоком реализуется сложное пространственное распределение скорости и давления. Результаты измерений и визуализации выявили различия в структуре течения и характере распространения закрученных и незакрученных струй и подтвердили целесообразность использования закрученных радиально вдуваемых стержневых струй — факела продуктов сгорания в вихревой горелке для стабилизации фронта пламени в прямоточных камерах сгорания преимущественно форсажного типа.  [c.365]

При увеличении тока возникает гидродинамическое течение со скоростями, значительно превышающими скорости, обусловленные естественной конвекцией. Течение газа сильноточных дуг направлено обычно от стержневого катода к плоскому аноду и называется катодной струей. Газовый поток входит в зону W-дуги в районе катода и уходит в радиальном направлении вблизи анода (рис. 2.29).  [c.76]

Задача 501 (рис. 316). Стержневой механизм состоит из четырех стержней, причем стержень О А вращается с угловой скоростью а стержень О В—с угловой скоростью (о в указанных на рисунке направлениях. В рассматриваемый момент стержень О А вертикален, стержни АС и О В горизонтальны, а стержень ВС образует с вертикалью угол 30°. Определить в этот момент величину скорости точки С, если О В=Ь, OiA=b 3.  [c.192]

Неизменяемая механическая система нз трех материальных точек А, В я D одинаковой массы т, размещенных в вершинах равностороннего стержневого треугольника, движется в плоскости этого треугольника. В положении, изображенном на рисунке, скорости точек А п D одинаковы, равны и и направлены перпендику-  [c.104]


На рис. В. 10 —В. 18 приведены примеры стержневых элементов конструкций из разных областей техники, взаимодействующих с потоком жидкости или воздуха. На рис. В. 10 показана якорная система удержания плавающих объектов. Якорные тросы в ряде случаев рассматривать как абсолютно гибкие стержни нельзя, так как они обладают значительной жесткостью на изгиб и кручение. На рис. В.11 приведена система для охлаждения жидкости, которая протекает в трубках (система охлаждения реакторов). Трубки с жидкостью находятся в потоке. Для более интенсивного охлаждения трубки должны быть с очень тонкими стенками, поэтому аэродинамические силы, зависящие от скорости потока Vo, могут вызвать большие напряжения в трубках (в статике) или вызвать  [c.8]

Стандартное испытание на разрыв одного стержневого образца пластичного материала продолжается довольно долго — несколько десятков минут. Соответствующая, относительно невысокая скорость деформирования оговорена стандартами. Дело в том, что ускоренные испытания дают повышенные характеристики прочности и пониженные характеристики пластичности. Чем меньше время испытания, тем упомянутые различия проявляются более отчетливо. Обращаем внимание на то, что пластическое деформирование материала всегда сопровождается существенным тепловыделением. Поэтому образцы заметно нагреваются при быстрых испытаниях.  [c.63]

Предельное равновесие жесткопластического тела. С задачами подобного рода мы уже встречались применительно к стержневым системам. Общая постановка будет состоять в следующем. На части поверхности заданы мгновенные скорости перемещений на части поверхности St заданы усилия (аГь где р,—неопределенный множитель. Требуется определить несущую способность тела, т. е. то значение параметра нагрузки Хт, при котором наступает общая текучесть, это значит, что тело получает возможность неограниченно пластически деформироваться. Вообще при р, < JJ.T в теле могут возникать пластические зоны, но примыкающие к ним жесткие области ограничивают свободу пластического течения.  [c.487]

Чтобы разъяснить основную идею, вернемся к той форме рас-суждений, которая была проведена в 5.7, 5.8 применительно к стержневой системе пусть будут gi — обобщенные скорости деформации некоторых элементов, Qi — соответствующие обобщенные силы. Представим себе теперь, что две системы, которые будут соответственно отмечаться индексами 1 и 2, соединены между собою так, что некоторые элементы их деформируются  [c.497]

Дроби, заключенные в круглые скобки и входящие в (5.59) и (5.60), представляют передаточные функции - постоянные в случае постоянных передаточных отношений приводимых элементов (круглые зубчатые колеса, червячные и другие передачи) и переменные при переменных скоростях движения звеньев (стержневые механизмы, некруглые зубчатые колеса и т. п.).  [c.100]

Цикловые диаграммы четырехзвенных стержневых механизмов. Цикл движения стержневого механизма обычно включает два интервала рабочего (прямого)—и холостого (обратного) перемещения —ведомого звена. На границах интервалов ведомое звено, как правило, занимает одно из своих крайних положений, и скорость его равна нулю. Следовательно, расчет цикловой диаграммы требует определения крайних положений ведомого звена. Для четырехшарнирного механизма крайними будут положения, в которых кривошип АВ и шатун ВС образуют одну прямую (рис. 157,в). Для определения крайнего правого положения D коромысла из точки А радиусом г + 1 делаем засечку на дуге р—р. Засечка радиусом I—г определяет крайнее левое положение D коромысла. Угол i >= D "— полный угол поворота коромысла D, углы фРи ф измеряют  [c.211]

При эмульсионном и пробковом режимах течения паровая фаза еще достаточно диспергирована (раздроблена), так что скольжение невелико, если скорости циркуляции значительны. При стержневом режиме из-за расслоенного течения величины Wok могут быть значительны.. Во всех случаях с увеличением скорости циркуляции относительное скольжение-уменьшается. При ск=0 Wyn— n, ф=р.  [c.314]


В этой главе отдано предпочтение наиболее перспективным аналитическим методам синтеза стержневых механизмов с низшими кинематическими парами, значение которых в современной технике возрастает, поскольку они отличаются меньшим износом и допускают значительные скорости движения звеньев по сравнению с другими механизмами — кулачковыми, зубчатыми и др. Основное внимание уделено кинематическому синтезу механизмов.  [c.74]

К ограничениям наряду с упомянутыми условиями существования кривошипов стержневых механизмов, обеспечения требуемых габаритных размеров могут быть отнесены и многие другие условия обеспечение заданного к. п. д. механизма, заданного ритма движения точки вдоль кривой, заданного отношения скоростей звеньев и т. п.  [c.77]

Теорема V. Проекции аналогов ускорений двух точек твердого звена стержневой системы на направлении прямой, определяемой этими точками, отличаются на величину аналога центростремительного ускорения в относительном вращении одной точки около другой. Последний но абсолютной величине равен произведению относительных скоростей возможного и действительного движений, деленному на расстояние обеих точек друг от друга. Направление его образует с направлением названного центростремительного ускорения угол 0° или 180°, равный углу между относительными скоростями обоих движений.  [c.52]

Научное творчество Мора в значительной степени связано с теорией стержневых систем. Его имя встречается в теоретических разработках вопросов сопротивления материалов, в строительной механике. В кинематике механизмов ему принадлежит значительная доля участия в авторстве одного из самых любопытных методов исследования механизмов — метода планов скоростей и ускорений. Он работал над созданием этого метода много лет— с 1879 по 1887 г. Одновременно с Мором английский механик Роберт Смит проводил исследования в том же направлении и пришел к совершенно аналогичным результатам. Его мемуар Новый графический анализ кинематики механизмов был опубликован в 1885 г.  [c.82]

Применением того или иного способа, ориентированного на знание плана скоростей, можно определить уравновешивающую силу. Из предыдущей главы мы знаем, что построить план скоростей принципиально возможно для всех механизмов первых трех классов и для многих механизмов четвертого класса. А так как различие между механизмом и фермой зависит лишь от степени подвижности той или иной стержневой системы, то, следовательно, с равным правом можно применить метод жесткого рычага и к определению напряжений в стержнях ферм. Сделать это можно, сочетая его с кинематическим методом Мора. Суть последнего заключается в том, что из жесткой стерн невой системы выбрасывается одно звено, напряжение в котором является искомым. При этом кинематическая цепь приобретает одну степень свободы и, следовательно, для двух точек, ограничивающих изъятый стержень, можно задаться произвольно их скоростями. Это и приводит к применению метода жесткого рычага.  [c.158]

Спектральный метод. Спектральный метод рекомендуется применять для измерения толщины разнообразных покрытий (цинкового, медного, никелевого, хромового и др.) на металлической основе из цветных сплавов и ферромагнитных материалов, а также пассивированных покрытий па стальной основе [55, 56]. Измерение основано на продолжительности пробоя покрытия. Между контролируемой деталью с покрытием и постоянным стержневым электродом, сделанным из материала, отличного по составу от основы детали, создается искровой разряд. Одновременно с включением разряда производят отсчет времени по секундомеру. По мере горения разряда наблюдается непрерывное изменение интенсивностей спектральных линий покрытия и основы, связанное с выгоранием покрытия. При этом скорость изменения интенсивности зависит от толщины покрытия, силы тока разряда и других факторов.  [c.109]

ЮТ электрофильтры. Конструктивно электрофильтр (рис. 19.4) представляет собой металлический или железобетонный корпус, внутри которого расположены пластинчатые элементы с развитой поверхностью, являющиеся осадительными электродами. Между ними установлены обычно стержневые корони-рующие (генерирующие электроны) электроды. Коронирующие электроды соединены с отрицательным полюсом агрегата электропитания, дающего выпрямленный пульсирующий ток высокого напряжения (до 80 кВ). Осадительные электроды заземляются. Запыленный дымовой газ со скоростью 1,5—2 м/с движется в межэлектродном пространстве.  [c.166]

Задача 1117. Шарнирно-стержневой ромб AB D с поперечным стержнем BD вращается с постоянной угловой скоростью со вокруг оси, проходящей через вершину Л и перпендикулярной к его плоскости. В вершинах В, С к D находятся равные точечные массы т. Найти натяжения в стержнях, вызываемые вращением, пренебрегая силой тяжести и массой стержней, если АВ — ВС = BD = D = DA => I.  [c.388]

Рассмотрим теперь стержень 9. Мысленно отбросив его и заменяя его действие на оставшуюся часть системы силами и Гд, можно сообщить стержневой системе возможное перемещение, повернув вокруг точки Oj стержень СО . Воспользуемся принципом возможных скоростей. Возможная скорость точки С—v перпендикулярна к Oj, т. е. направлена по ОС. Возможная скорость точки E—v e перпендикулярна к ОЕ. Следовательно, мгновенный центр скоростей звена 7, а вместе с ним и части фермы EDAB будет находиться в точке-D.  [c.417]

Задача 8.1, Колесо радиуса г=2 м вращается вокруг неподвижное горизонтальной оси О так, что модуль скорости точки А обода колеса постоянен Ул=3,0 м/с. Стержневой т е-угольник АБС (рис. 8.8), шарнирно укрепленный своей вершиной на ободе колеса, совершает двищение, при которо.м основание треугольника ВС остается ия-ряллельным горнзопту. Определить траекторию, скорость и ускорение вершины С треугольника AB .  [c.182]


Задача 22.1. Стержневой прямоугольный треугольник ASD, шарннрпо соединенный в точках Л, В, D, вращается вокруг вертикальной оси AD с постоянной угловой скоростью О) (рис. 22.13). Стержень АВ весом Р и длиной I образует с осью вращения угол ф. Определить полную реакцию шарнира А и усилие, которое испытывает стержень BD, считая стержни AD и BD невесомыми.  [c.408]

На рис. 83 приведено распределение скоростей по оси г = о в стержне конечной длины I = 5Ro после отражения продольной волны от свободного торца цилиндра для различных моментов времени. Величина скорости после отражения на свободном конце быстро возрастает и приближается к величине, предсказываемой элементарной стержневой теорией. Качественно такая же картина наблюдается и при других значениях г, но амплитуда осцилляций за счет боковых волн убывает при удалении от оси. Напряжение на контактной поверхности в точке г = 2 = 0 уменьшается от значения раКо до значения рДоКо, получающегося по стержневой теории, и затем колеблется около этого значения с периодом колебаний, близким в рассматриваемом примере к АЯо/а.  [c.656]

В главе 5 было дано определение идеального упругопластического и жесткопластического тела и выяснены некоторые общие свойства стержневых систем, составленных из идеальных унругопластических или жесткопластических элементов. Термин идеальная пластичность понимается здесь, как и в гл. 5, в том смысле, что материал не обладает упрочнением, т. е. при а = Ot стержень может деформироваться неограниченно. Напомним, что рассматривалась задача о предельном равновесии, т. о. о нахождении нагрузки, при которой наступает общая текучесть. При этом деформации стержней, перешедших в пластическое состояние, как это заранее оговорено, могут быть сколь угодно велики, если не принимать во внимание геометрических ограничений. Учитывая эти последние, более осторожно было бы говорить о мгновенных скоростях пластической деформации эти мгновенные скорости могут быть совершенно произвольны и действительно сколь угодно велики. Напомним, что исчерпание несущей способности стержневой системы, как правило, соответствует превращению ее в механизм с одной степенью свободы. Поэтому соотношения между скоростями пластической деформации ее элементов остаются жестко фиксированными, эти скорости определяются с точностью до общего произвольного множителя. Напомним также фундаментальный результат, полученный в 5.7 и 5.8. Если стержневая система нагружена системой обобщенных сил Qi, то в предельном состоянии выполняется условие  [c.480]

Теперь нам необходимо принять некоторую систему предположений, которая позволила бы сделать общие заключения о виде функции F и распределении скоростей пластического течения е . При этом результаты, полученные для стержневых систем и сформулированные в виде соотношений (15.1.2) и (15.1.3), должны быть использованы в качестве наводящих соображений. Может быть, наиболее простой путь состоял бы в том, чтобы просто постулировать невогнутость функции / (Оц) и справедливость ассоциированного закона течения однако представляется соблазнительным положить в основу теории некоторый общий принцип, допускающий достаточно простую формулировку и содержащий в себе все необходимые следствия. Такого рода принципы или постулаты формулировались разными авторами в различной форме мы приведем здесь два принципа, приводящих к совершенно эквивалентным результатам.  [c.482]

Электрические фильтры устанавливают к котельным агрегатам средней и большой паропроизводительности. Работа электрофильтров основана на том, что в проходящих через них запыленных газах частицы золы заряжаются от стержневых излучающих электродов положительными электрическими зарядами, вследствие чего. эти частицы притягиваются к осадительным пластинчатым электродам, заряженным отрицательными зарядами. Электрофильтры при работе на газах, запыленных мелкодисперсными частицами, характеризуются высокой степенью очистки, составляющей 90—95%. Скорость движения газов в них не превышает 2—З м1сек, а аэродинамическое сопротивление составляет 150—200 н/м .  [c.317]

В результате волноводного эффекта в пластинах и стержнях возникают нормальные волны (волны Лэмба) [4] и стержневые (волны Порхгаммера). Скорость их распространения зависит от частоты колебаний / и толщины пластины h или диаметра стержня d (рис. 3, 4). В результате дисперсии скорости возникают фазовая скорость Ср — скорость распространения фазы волны и групповая скорость g — скорость распространения импульса, связанные зависимостью  [c.191]

С помощью калориметра специальной конструкции определена средняя температура частиц покрытия из двуокиси циркония в момент их встречи с подложкой при нанесении покрытия стержневым методом. При расстоянии между соплом пистолета и покрываемой поверхностью в 50 мм 60.2% всех частиц попадает на покрываемую поверхность, нагретую до температуры плавления. Экспериментально установлено, что при охлаждении, после завершения процесса нанесения, существенного температурного перепада между покрытием и соприкасающимся с ним металлом не наблюдается. Предполагается, что процесс удара частицы о поверхность состоит из двух основных фаз. Степень проявления первой фазы — хрупкого разрушения капель — определяется отношением значений коэффициента вязкости капель диспергированного материала в момент их попадания на обрабатываемую поверхность к скорости их полета. Сразу же вслед за первой фазой проявляется вторая, когда осколки разрушенной капли под действием сил поверхностного натяжения приобретают округлую форму и в значительной мере смачивают поверхность. Библ. — 4 назв., рис. — 5.  [c.346]

При ударе бабы по наковальне в волноводе возбуждается упругая волна, идущая по стержню-волноводу, и при ее отражении от конца волновода, связанного с головкой образца, последняя приобретает скорость движения, определяемую скоростью удара бабы по наковальне и размерами волновода. Амплитуда упругой волны в волноводе, вызванная ударом бабы по наковальне, после короткого начального периода установления достигает величины (рис. 35) ао=рсоИб (р — плотность материала стержня-волновода Со — стержневая скорость звука ug — скорость бабы в момент удара).  [c.97]

Содержание статьи несложно, посвящена она исследованию построения планов скоростей и ускорений для нескольких случаев. (Интересно, что в одном американском техническом журнале 50-х годов была помещена статья, в которой с торжеством приводится решение все тех же тривиальных случаев, в частности решенных Ассуром в 1907 г.,— по-видимому, сказывается отсутствие достаточно полной информации.) В самом начале статьи Ассур высказывает мысль, которую он впоследствии неоднократно повторит,— о существовании некоторого подобия между задачами кинематики и задачами статики. На этом основании Ассур и будет искать общие решения для кинематических задач. Здесь же он замечает, что построения планов, или картин скоростей и ускорений играют в кинематике стержневых механизмов роль, аналогичную той, которую планы Кремоны занимают в статике стержневых систем.  [c.35]

Теоретическая модель потока раздельного течения фаз со скольжением, в которой учитывались особенности критического режима течения, предложена Фауске [60]. В основу построения модели полол ены следующие допущения в критическом сечении двухфазная смесь представляет собой раздельный стержневой поток, в котором каждая из фаз в занятой ею доле сечения канала движется со своей скоростью пар и жидкость находятся в равновесии критический поток достигается тогда, когда с уменьшением противодавления массовый расход больше не увеличивается  [c.7]


Например, в [88] измерялась толщина жидкой пленки в опытах с воздуховодяной смесью. Было обнаружено, что на выпуклой поверхности толщина водяной пленки примерно на 50% меньше, чем на вогнутой при одинаковых значениях массовой скорости и воздухосодержания. Такой же вывод можно сделать, анализируя [89], в которой с помощью электрического зонда сопротивления измерялась толщина жидкой пленки в канале кольцевого сечения на выпуклой и вогнутой поверхностях. Результаты опытов свидетельствовали о том, что на стержневом твэле толщина пленки была меньше, чем на внутренней поверхности трубы при одинаковых значениях pw к х.  [c.143]

Этот результат представлен на рис. 8.5, из которого видно, что при указанных режимных параметрах критическая мощность семистержневой сборки возросла примерно на 20%. Основные результаты исследования [ 108], полученные на семи- и трехстержневых сборках, представлены на рис. 8.6 и 8 .7 соответственно в виде зависимости критической мощности сборки от температуры воды на входе при давлениях 7,4 и 9,8 МПа для массовых скоростей потока от 600 до 2000 кг/(м -с). Как видно из рисунков, интенсификаторы теплообмена существенно увеличивают критическую мощность стержневой сборки. Анализ и результаты сравнения показывают, что прирост предельной мощности у сборок с интенсифика-торами увеличивается с ростом массовой скорости потока и с уменьшением недогрева воды на входе в сборку. Это положение достаточно хорошо иллюстрируется рис. 8.8, из которого видно влияние массовой скорости потока и температуры воды на входе на прирост предельной мощности в трехстержневой модели ТВС с интенсификаторами, выраженный в процентах по отношению к критической мощности аналогичной сборки без иитенсификаторов. При температуре воды на входе 250°С и массовой скорости потока 2000 кг/(м -с) прирост критической мощности составляет более 50%.  [c.153]

На рис. 8.9 представлены экспериментальные данные, полученные на модели ТВС. Сравнение экспериментальных данных, полученных на сборках с интенсификаторами и без них, показывает, что применение интенси-фикаторов теплообмена существенно расширяет область бескризисной работы стержневых сборок по выходному паросодержанию и повышает критическую плотность теплового потока. При одной и то же плотности теплового потока абсолютная величина прироста зоны бескризисной работы за счет увеличения критического массового паросодержания составляет 0,2—0,3. С увеличением массовой скорости и давления этот прирост за счет критического массового паросодержания возрастает.  [c.154]

Аналогичный результат был получен на подобной стержневой сборке, но оснащенной модернизированными интенсификаторами теплообмена, у которых отрезки скрученных лент устанавливались с зазором по отношению к твэлам. Этот интенсификатор оказался более эффективным и результаты по критической мощности получились выше, чем на сборке с первым типом интенсификатора. На рис. 8.9 представлены и экспериментальные данные, полученные при наличии модернизированных интенсифи-каторов, установленных на трехстержневой сборке с шагом 220 мм. Следует отметить, что на трехстержневой сборке с интенсификаторами во всех опытах с ростом массовой скорости критическая плотность теплового потока возрастала, а в аналогичных опытах на сборке без интенсифи-каторов она уменьшалась.  [c.154]


Смотреть страницы где упоминается термин Скорость стержневая : [c.294]    [c.96]    [c.53]    [c.656]    [c.448]    [c.15]    [c.164]    [c.211]    [c.236]    [c.356]    [c.406]    [c.54]    [c.10]   
Теория упругости (1975) -- [ c.497 ]



ПОИСК



412, 413 стержневые



© 2025 Mash-xxl.info Реклама на сайте