Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость движении переменного

Мы рассматривали для простоты случай, когда тепловой источник или сосредоточенная сила движутся с постоянной скоростью, но можно найти соответствующие выражения и для случая, когда скорость движения переменна.  [c.65]

TOB можно дополнительно выделить модель передвижения робота к объектам манипулирования, модель, позволяющую оценивать управляемость робота для определенного диапазона скоростей движения, переменной массы и свойств трассы, а также модель, позволяющую решать задачи ближней навигации (в частности, предупреждение столкновений с препятствиями).  [c.28]


Виброустойчивость. Вибрации вызывают дополнительные переменные напряжения и, как правило, приводят к усталостному разрушению деталей. В некоторых случаях вибрации снижают качество работы машин. Например, вибрации в металлорежущих станках снижают точность обработки и ухудшают качество поверхности обрабатываемых деталей. Особенно опасными являются резонансные колебания. Вредное влияние вибраций проявляется также и вследствие увеличения шумовых характеристик механизмов. В связи с повышением скоростей движения машин опасность вибраций возрастает, поэтому расчеты на колебания приобретают все большее значение.  [c.7]

Сравнение теоретических и экспериментальных зависимостей средней скорости от радиальной переменной для различных сечений трубы. можно провести по рпс. 69 а—г). Видно, что наиболее удовлетворительным является совпадение результатов вдали от отверстия (г=0) и от верхней границы жидкости (2 = //). Расхождение результатов вблизи этих точек (г=0, з = Я), вероятно, объясняется сложностями расчета и упрощающими допущениями о величине средней скорости в этих точках (см. (5. 6. 9)—(5. 6. 11)). В области пространства, занятой двухфазным потоком и форму которой будем считать конической (см. рпс. 66), пространственное распределенпе средней скорости движения газожидкостной смеси оказывается гауссовским (рис. 70). Этот теоретический результат подтверждается экспериментальными данными [78].  [c.228]

Проделанными операциями (рис. 210, б) мы перешли от полюса А к полюсу С. Результат подтверждает (см. 63), что в общем случае движения твердого тела угловая скорость при перемене полюса не изменяется ((й =ш), а меняется только поступательная скорость (w y).  [c.179]

Считаем, что относительная скорость отделения частиц постоянна по величине и направлена в сторону, противоположную скорости г) движения точки переменной массы (рис. 323). Тогда, проектируя (4") на ось Ох, направленную по скорости движения точки, дифференциальное уравнение прямолинейного движения точки переменной массы принимает вид  [c.512]

Пусть точка переменной массы или ракета движется прямолинейно в так называемом, по терминологии Циолковского, свободном пространстве под действием только одной реактивной силы Считаем, что относительная скорость щ отделения частиц постоянна и направлена в сторону, противоположную скорости и движения точки переменной массы (рис. 166). Тогда, проецируя (4") на ось Ох, направленную по скорости движения точки, дифференциальное уравнение прямолинейного движения точки переменной массы принимает вид  [c.538]


Скорость — векторная величина, характеризующая быстроту движения и его направление. В процессе движения скорость может быть постоянной, при этом движение называется р а в н о м е р-н ы м, или переменной либо только по величине, либо и по величине и по направлению движение, происходящее с непостоянной скоростью, называют переменным.  [c.103]

Переменным называется вращательное движение, угловая скорость которого переменна. При таком движении любая точка тела (кроме точек, находящихся на оси вращения) в равные промежутки времени проходит неравные дуги. Примером переменного вращательного движения является вращение коленчатого вала двигателя в период пуска или остановки.  [c.116]

На рис. 3.1, а показана траектория движения частицы А в неподвижной системе координат, где за определенное время координаты частицы изменялись с на х , г- за время х , 2г за время tч и т. д. Таким образом, при описании движения переменными являются скорость, ускорение и координаты частицы. Практически для большинства инженерных задач нет необходимости в знании параметров движения отдельных частиц, поэтому способ Лагранжа применяется только в особых случаях например, для описания переноса жидкостью мельчайших твердых частиц (ила).  [c.35]

В гидроприводе рабочая жидкость выполняет важную роль, являясь одновременно носителем энергии и смазкой. При этом она подвергается воздействию переменных давлений, скоростей и температур. Так, в гидроприводе горных машин перепад дав.тений бывает до 25 МПа, в механизированных крепях — до 80 МПа. Скорость движения жидкости в отдельных элементах гидропривода достигает 80 м/с, обычный интервал температур составляет от 10 до 80° С.  [c.152]

В аэродинамике существуют два метода кинематического исследования жидкой среды, один из которых называют методом Лагранжа, а другой — методом Эйлера. Каково основное содержание этих методов и чем они различаются Рассмотрите также следующую задачу. Пусть движение жидкости задано проекциями скоростей в переменных Эйлера х, ц, ) V = тх Ч- nt, V = —ку + II, 0,  [c.40]

Здесь V — скорость движения сечения в целом, v = du/dt, где и — перемещение, принятое за искомую переменную в 6.6 и далее.  [c.566]

На рис. 246 показана схема гидропривода поступательного движения с объемным регулированием. Регулируемым насосом 1 масло подается под давлением в поршневую полость гидроцилиндра 4 и перемещает поршень 5 вправо. Из штоковой полости цилиндра масло через распределитель 3 и подпорный клапан I выжимается в бак. Бесступенчатое регулирование скорости поршня осуществляется за счет изменения подачи насоса. При малых скоростях движения поршня, т. е. в том случае, когда насос отрегулирован на малую подачу, величина утечек масла соизмерима с расходом жидкости через гидроцилиндр. Это приводит к существенным колебаниям скорости при изменении нагрузки и ограничивает возможности объемного регулирования при малых скоростях двил<ения поршня. Однако гидроприводы с объемным регулированием имеют преимущество, заключающееся в том, что насос переменной подачи позволяет непрерывно изменять скорость рабочего органа без потерь энергии, связанных с перепуском избытка масла под давлением на слив.  [c.375]

Помимо непосредственного влияния переменности коэффициента вязкости (Д. на свойства переноса (количества движения) переменность оказывает еще и косвенное влияние на интенсивность теплоотдачи. Косвенное влияние состоит в следующем температура изменяет вязкость [а, а последняя оказывает влияние на распределение скорости. Это обстоятельство приводит к тому, что интенсивность теплоотдачи оказывается зависящей от направления теплового потока.  [c.188]

В зависимости от скорости движение точки может быть равномерным и неравномерным. При равномерном движении скорость постоянна по величине, при неравномерном — переменна. Изменение скорости во времени характеризуется ускорением. Скорость и ускорение точки являются векторными величинами.  [c.135]


Заметим прежде всего, что приведенный момент инерции зависит от квадрата отношения скоростей. Следовательно, это — величина переменная, зависящая от положения механизма. Только в частном случае,, когда передаточное отношение в механизме не меняется (зубчатые механизмы с круглыми колесами, фрикционные и ременные передачи и т. д.), приведенный момент инерции остается постоянным. Обратим внимание еще на то, что величина Приведенного момента инерции всегда положительна. Так как отношения скоростей отдельных точек механизма зависят только от его положения, то приведенный момент инерции не зависи от скорости движения механизма. Нужно также помнить, что пере-  [c.230]

Из равенств (5.5) и (5.7) следует, что при переменной скорости движения каждое звено определяется соответствующей силой инерции Р и парой сил инерции М .  [c.80]

Дроби, заключенные в круглые скобки и входящие в (5.59) и (5.60), представляют передаточные функции - постоянные в случае постоянных передаточных отношений приводимых элементов (круглые зубчатые колеса, червячные и другие передачи) и переменные при переменных скоростях движения звеньев (стержневые механизмы, некруглые зубчатые колеса и т. п.).  [c.100]

Скорость цепи. Для цепных передач характерна не постоянная, а средняя скорость движения цепи. Это объясняется тем, что цепь состоит из отдельных звеньев и располагается на звездочке не по окружности, а по многоугольнику с числом вершин, равным числу зубьев звездочки. Поэтому скорость цепи переменна в пределах поворота звездочки на оДин зуб, но средняя скорость за один оборот цепи постоянна.  [c.274]

Чаще, однако, переменные силы, действующие на звенья ме-ханизма, связаны или с перемещениями, или со скоростями точек приложения этих сил. Например, сила пружины связана с ее деформацией, т. е. с перемещением точки приложения силы, сила взаимодействия проводника с током и магнитного поля в электродвигателе связана со скоростью движения проводника относительно поля и т. д.  [c.137]

При ориентировочных расчетах сила трения может быть вычислена по формуле (7.1) в предположении, что коэффициент трения постоянен. Значения коэффициентов сцепления и трения скольжения для некоторых материалов приведены в табл. 7.1. Однако при больших скоростях движения и переменных нагрузках необходимо учитывать влияние на коэффициент трения величин скорости, удельного давления, а также условий работы узла трения  [c.154]

Поясним общие положения теории подобия на частном примере из гидромеханики. Для этого рассмотрим один из простых случаев стационарного изотермического вынужденного движения жидкости или газа внутри плоского канала. Схема такого движения показана на рис. 2-8. На входе в канал скорость движения постоянна. По мере продвижения среды вдоль канала вследствие сил вязкого трения частицы жидкости вблизи поверхностей замедляются. В потоке возникает переменное поле скоростей.  [c.46]

О, О, 2Го> О, проекции угловой скорости ы верчения твердого тела — О, О, (постоянные) при малых колебаниях около такого движения переменное положение точки соприкосновения О угловая скорость о будут мало отличаться от неизменного положения точки О и неизменного значения угловой скорости ш. относящихся к чистому верчению. Поэтому, обозначив через лг, jr, -f-координаты точки О и через р, Гд -f-е — проекции вектора , можно рассматривать величины X, у, Z и р, q, е как бесконечно малые. Возьмем уравнение поверхности а в виде z — z (x, у) = О и разложим г х, у) по формуле Маклорена. Принимая во внимание, что, так как плоскость г = зо является касательной к поверхности а в точке О, в этом разложении должны отсутствовать члены первого порядка относительно х, у, и пренебрегая членами порядка выще второго, уравнение поверхности в можно написать в виде  [c.234]

Рассмотрим случаи с,= onst, которые особенно многочисленны при неправильной форме частиц, так как согласно 2-4 автомодельность по R6t (с/ = onst) наступает тем раньше, чем больше несфе-ричность. При /=1,15- 1,5 последующие решения верны для Rei 200—400. Решения дифференциального уравнения при с/ = onst для нисходящего прямотока получены в [Л. 306], для восходящего прямотока в [Л. 71, 72, 143, 254, 262] и для противотока в [Л. 72]. В общем случае уравнения (2-17), (2-18 ) относятся к одному классу рациональных функций, интегрирование которых возможно по формуле общего типа (Л. 71]. Пользуясь выражением (2-40) и полагая скорость воздуха неизменной, найдем время и конечную скорость движения частиц при противотоке. Разделяя переменные и определяя постоянную интегрирования из начальных условий (т=0, VT = VT.n), получим [Л. 71, 72]  [c.66]

Следствие 5.3.3. (Формула 1].иолковского). Если относительная средняя скорость переменной части системы и — у = по постоянна по величине и направлена в сторону, противоположную скорости движения центра масс системы, а внешние силы отсутствуют, то  [c.410]

В структурном синтезе механизмов разрабатываются кинематические цепи с минимальным количеством звеньев для преобразования движения заданного количества входных звеньев в требуемые дзиже-жения выходных. Результатом структурного синтеза механизма является его структурная схема, указывающая звенья и характер их взаимосвязи (класс кинематических пар). Выходное звено может двигаться с постоянной или переменной скоростью. Движение это бывает непрерывное или прерывистое (с остановками), неизменное или циклически изменяющееся. Для направляющих механизмов важно, чтобы траектории точек выходного звена соответствовали заданным. Задачи структурного синтеза многовариантны. Одно и то же преобразование движения получают различными по структуре механизмами. Поэтому при выборе оптимальной структурной схемы учитываются технология изготовления звеньев и кинематических пар, а также условия эксплуатации механизмов.  [c.24]


Чтобы найти уравнение для изменения скорости движения жидкости вдоль трубы, рассмотрим изменение количества движения жидкости на участке трубы длиной йх. Радиус вихря при вязком течении по трубе является переменной величиной на участке трубы с1х он изменяется на с1г , а сечение кольцевого зазора, через который течет жидкость, соответственно на 2кг с1гц. Вследствие этого количество движения жидкости вдоль оси трубы изменится  [c.668]

Рассмотрим наиболее простой случай неустановившегося движения, когда тело перемещается прямолинейно без вращения со скоростью V ( ), переменной во времени жидкость неограничена и вдали от тела покоится. Движение тела вызывает движение жидкости с некоторой скоростью и (х, у, 2, t). Обозначим через Т кинетическую энергию массы жидкости, приведенной в движение перемещением тела. Ввиду переменности скорости v величина Т, очевидно, будет изменяться во времени, г. е. Т = Т (i). Согласно теореме о кинетической энергии ее изменение равно сумме работ, приложенных к системе внешних и внутренних сил. Единственной причиной движения жидкости является воздействие на нее движущегося тела. Обозначим через R силу этого воздействия и допустим, что движение происходит вдоль некоторой оси х Работа силы R затрачивается на изменение кинетической энергии жидкости поэтому, согласно теореме о кинетической энергии, за время di перемещения тела на расстояние dx изменение энергии составляет  [c.283]

Рассмотрим наиболее простой случай неустановившегося движения, когда тело движется прямолинейно без вращений со скоростью V ( ), переменной во времени жидкость неограничена и вдали от тела покоится. Движение тела вызывает движение жидкости со скоростью, которую обозначим и (х, у, г, 1). Обозначим через Т кинетическую энергию массы жидкости, приведенной в движение перемещением тела. Ввиду переменности скорости V величина Т, очевидно, будет меняться во времени, т. е. Т = Т 1). Согласно теореме о кинетической энергии ее изменение равно сумме работ, приложенных к системе внешних и внутренних сил. Единственной причиной движения жидкости является  [c.318]

Кроме квазиакустического приближения при решении задачи используется приближение более высокого порядка, основанное на гипотезе Кирквуда—Бете, предложенной в теории подводного взрыва [34. Согласно этой гипотезе возмущения распространяются с переменной скоростью, равной сумме местной скорости звука и скорости движения частицы жидкости, т. е. величине с + г)- Или, иначе говоря, предполагается, что ве-(  [c.39]

Явление пульсации скоростей заключается в том, что местные продольные скорости (продольные скорости движения частиц жидкости в неподвижной точке пространства) непрерывно изменяются, колеблясь около некоторой постоянной величины, называемой местной осредненной скоростью. На рис. 4.6 показана картина пульсации продольной скорости и (по данным М. А. Великанова) для некоторой неподвижной точки пространства. Определим осредненную местную скорость. Для этого возьмем в жидкости элементарную площадку d(n, принадлежащую некоторому поперечному сечению потока. За время dt через нее проходит количество жидкости, равное ud odt, где и — переменная (во времени) величина продольной скорости. За время Т через эту площадку пройдет объем жидкости  [c.102]

Для гидравлически гладких труб показатель степени п примерно равен 1,75 (tg 2 1,75) в области доквадратичного сопротивления п переменное и изменяется в пределах от 1,75 до 2,0 в области квадратичного сойротивления п = 2,0 (tg ад = 2). Поэтому в гидравлике для турбулентного режима движения жидкости при больших числах Рейнольдса принята квадратичная зависимость между средней скоростью движения и потерями напора  [c.106]

Неустановившимся называют такое движение жидкости, при котором скорость потока и давлениЬ в любой его точке изменяются во 1времеви, т. е. являются функци- ей двух переменных (времени и пространства). Примером неустановившегося движения служит истечение жидкости из отверстия резервуара при переменном напоре. В этом случае в каждой точке сечения струи, вытекающей из отверстия, скорость движения и давление изменяются во времени.  [c.28]

В СВЯЗИ С этим автор сделал попытку перестроить систему изложения, принятую в первом издании, так, чтобы можно было решать новые задачи, поставленные перед теорией механизмов и машин новой техникой. По сравнению с первым изданием автор изменил также порядок изложения материала. В новом издании сначала изложены общие вопросы теории механизмов и машин, необходимые для исследования механизмов всех видов (главы I—IV). Этот материал был подвергнут незначительной переработке. Главы V—IX, посвященные полному кинематическому и кинетостатическому исследованию механизмов различных видов, составлены заново. В главах X—XIII рассматриваются системы с двумя степенями свободы, механизмы с переменными массами звеньев, механизмы регулирования скорости движения машинного агрегата и основные сведения об автоматических устройствах (весь этот материал отсутствует в первом издании). Автор надеётся, что читатель, изучивший предлагаемый курс, получит достаточную подготовку для решения основных задач, связанных с проектированием новых машин.  [c.6]

Массовый расход газа через произвольное сечение канала при установившемся движении можно выра--РИС. 21. Истечение газа по ка- ить простым соотношением между налу переменного сечения скоростью движения, ПЛОТНОСТЬЮ и  [c.66]

Каждая ступень осевого компрессора состоит из ряда вращающихся лопаток 4, за которыми имеется ряд статорных лопаток. Все ступени компрессора подобраны таким образом, чтобы достичь максимума эффективной работы при высоких массовых расходах воздуха в нормальном загрузочном диапазоне. Перед передним рядом роторных лопаток 4 устанавливают поворотный входной направляющий аппарат (ПВНА) компрессора для направления входящего воздуха на эти лопатки под оптимальным углом. Лопатки ПНА и клапаны отбора приводят в действие с помощью гидравлических цилиндров, угол атаки лопаток изменяется постепенно в соответствии с массовь1М расходом воздуха. Клапаны отбора тоже приводят в действие с помощью гидравлических цилиндров, но скорость движения этих цилиндров не является переменной при работе.  [c.44]


Смотреть страницы где упоминается термин Скорость движении переменного : [c.25]    [c.555]    [c.11]    [c.136]    [c.262]    [c.245]    [c.20]    [c.494]    [c.236]    [c.243]    [c.158]    [c.151]   
Теоретическая механика Изд2 (1952) -- [ c.21 ]



ПОИСК



Групповая скорость Движение тела переменной массы

Движение переменное

Переменное вращательное движение. Угловая скорость и угловое ускорение в данный момент

Переменность скорости движения цепи

Плоское безвихревое движение несжимаемой жидкости Потенциал скоростей и функция тока. Применение функций комплексного переменного. Комплексный потенциал и сопряженная скорость

Скорость движения

Скорость переменного движения мгновенная

Скорость переменный



© 2025 Mash-xxl.info Реклама на сайте