Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Трение Виды в в передачах

По конструктивному исполнению элементов механических передач, участвующих в преобразовании параметров движения, различают фрикционные, ременные, зубчатые, червячные, цепные и канатные передачи. В передачах первых двух видов движение от ведущего к ведомому звену передается за счет сил трения на контактных поверхностях сцепляющихся друг с другом ведущего и ведомого звеньев. Эти передачи относятся к передачам движения трением. В зубчатых, червячных и цепных передачах движение передается за счет силового воздействия зацепляющихся друг с другом элементов ведущего на элементы ведомого звена. Эти передачи составляют группу передач движения зацеплением. Наконец, канатные передачи образуют особую группу для передачи движения закрепленным на ведущем звене канатом. Эти передачи будут рассмотрены отдельно при изучении устройства и принципа работы полиспастов (см. п, 6.3). Из-за наличия в ременных, цепных и канатных передачах гибких связей - соответственно ремней, приводных цепей и канатов их называют передачами с гибкой связью.  [c.38]


Дифференциал кулачкового типа с повышенным внутренним трением выпускается в различных конструктивных модификациях — с радиальным и осевым расположением кулачков. Общий вид дифференциала ГАЗ с радиальным расположением кулачков дан на рис. Х.4. Момент от ведомой шестерни главной передачи подводится к обойме 1, в пазах которой расположены плунжеры 2. Наружные концы плунжеров соприкасаются с внутренней поверхностью обоймы 3, связанной шлицевыми соединениями с правой полуосью. Внутренние концы плунжеров соприкасаются с шайбой 4, насаженной на шлицах на левую полуось. Внутренняя поверхность обоймы 3 и наружная поверхность детали 4 имеет кулачки, очерченные по определенному профилю. При повороте автомобиля плунжеры  [c.259]

В машине энергия двигателя преобразуется сначала в механическую работу, а- затем в какой-либо другой вид энергии. В рабочей машине выполнение технологических трансформаций требует затраты некоторого количества механической работы, которая чаще всего обращается в теплоту, а затем рассеивается в процессе передачи силы от двигателя к месту воздействия инструмента на материал также затрачивается энергия на преодоление добавочных сопротивлений в виде сил трения и других сил, так что вся затраченная двигателем энергия в процессе действия рабочей машины расходуется на преодоление технологических и добавочных механических сопротивлений. В механизме технологические сопротивления отсутствуют и вся энергия двигателя идет на преодоление сопутствующих движению звеньев механизма сопротивлений в виде сил трения, сил тяжести звеньев и т. д. Если отвлечься от причины и характера сопротивления, а рассматривать сопротивления, появляющиеся в процессе работы механизмов и машин, только с количественной стороны, то методы статического и динамического расчетов механизмов, применяемых для воспроизведения заданных движений, и машин, в которых механизмы сообщают инструментам движения с целью получения заданной трансформации материала, могут быть одинаковыми. Поэтому в дальнейшем изложении не будем отличать механизм от машины, имея в виду, что различие их заключается лишь в применении, а не в структуре. Перейдем теперь к рассмотрению задач статики и динамики машин.  [c.354]

Явления сухого и жидкостного трения по своей природе совершенно различны. Поэтому различны и методы учета сил трения в механизмах. Во фрикционных, ременных и других передачах наблюдается сухое трение в смазанных подшипниках, подпятниках и т. д. — жидкостное трение, переходящее иногда в полусухое или даже сухое трение (периоды пуска машины). Поэтому необходимо изучать оба вида трения.  [c.214]


Долговечность работы передач, коэффициент трения, а следовательно, КПД зацепления зависят от шероховатости зубьев. Обычно рекомендуется сопряжение В, для реверсируемых передач — С и D. Степень точности можно выбирать, руководствуясь данными табл. 6.7 примеры условного обозначения точности передачи со степенью 8 — по нормам кинематической точности, степенью 7 — по нормам плавности работы, степенью 6 — по нормам контакта зубьев, с видом сопряжения В и видом допуска на боковой зазор а 8-7-6-Ва СТ СЭВ 641—77 и для конических передач 8-7-6-В СТ СЭВ 186—75.  [c.106]

Сцепные муфты делятся на два вида а) муфты, в которых применено кулачковое или зубчатое зацепление и б) муфты, в которых передача момента осуществляется силами трения (фрикционные муфты).  [c.391]

Уравнение движения жидкости в гидродинамической передаче принципиально не отличается от основных уравнений лопастных машин (см. 59). В насосе гидропередачи момент количества движения жидкости увеличивается, и поэтому крутящий момент на валу насосного колеса определяется по уравнению (362). В турбине момент количества движения жидкости, протекающей через колесо, уменьшается, обусловливая появление вращающего момента турбины, величина которого определяется по уравнению (363). При отсутствии трения жидкости и передачи энергии уравнения (362) и (363) принимают вид  [c.294]

В формулах (142), (145), (147) и (148) величина оо или То учитывает сопротивление движению дислокаций в теле зерна. Величина этого напряжения зависит от сил Пайерлса—Набарро и наличия препятствий для продвижения дислокаций в плоскости скольжения (леса дислокаций, чужеродных атомов, частиц дисперсной фазы и других дефектов). Указанные факторы как бы моделируют силы трения, преодолеваемые дислокацией при движении ее в пределах зерна, поэтому эти напряжения названы напряжениями трения . Параметр (То (или то) можно представить в виде суммы составляющих, величина ky характеризует трудность передачи скольжения, т. е. эстафетной передачи деформации от зерна к зерну, и, таким образом, зависит от состояния границы. В частности, повышение степени закрепления дислокационных источников в области границы при сегрегации примесей внедрения в о. ц. к. поликристаллах сопровождается ростом Xd и, следовательно, k . Поэтому Xd и ky для о. ц. к. металлов достаточно велико (см. табл. 11), хотя величина т имеет вследствие особенностей скольжения в о. ц. к. решетке более низкое значение, чем для г. ц. к. металлов. Большое значение ky определяет сильную зависимость (Гт от величины зерна.  [c.242]

Образование вторичных вихрей в каналах лопастных систем обусловлено разностью давлений на тыльной и лицевой сторонах лопастей, т. е. перетеканием по стенкам тора и чаши из области повышенных давлений (лицевая сторона) в область пониженных давлений (тыльная сторона). В середине канала жидкость течет от тыльной стороны к лицевой. Выделить и подсчитать величину потерь при указанных видах вихреобразования в гидродинамических передачах пока не представляется возможным, поэтому они косвенно входят в потери трения.  [c.52]

Виды передач. По способу соединения гибкого звена с другими звеньями различают три вида передач с фрикционным сцеплением (рис. 3.105, а), непосредственным соединением (рис. 3.105, б) и с зацеплением (рис. 3.105, б). В передачах с фрикционным сцеплением гибкое звено (ремень < ) сцепляется с ведущим / и ведомым 2 звеньями за счет сил трения, возникающих между ними. При непосредственном соединении  [c.341]

В рассматриваемом этапе движения будем пренебрегать влиянием сил внутреннего сопротивления, поскольку движение имеет апериодический характер, причем доминирующее влияние оказывает момент трения в самотормозящейся передаче. Дифференциальное уравнение движения системы при указанном допущении имеет вид  [c.296]

При наличии потерь на трение в передаче связь между моментами на валах центральных колес имеет вид  [c.49]

Пружина 8 прижимает фрикционные диски муфты с усилием несколько большим, чем это необходимо для передачи предельного момента. В период передачи крутящего момента ролики 9 нажимают на рабочие криволинейные профили пазов кулачка (см. вид Б], а составляющая S нормального давления JV, направленная параллельно оси вала, стремится переместить нажимной диск 7 в сторону, соответствующую сжатию пружины 8. Результирующее усилие Т = Q — S, действующее па диски, соответствует расчетному, при котором момент трения дисков равен предельному моменту.  [c.430]


Силы трения в общей классификации сил, установленной нами в гл. 1, вошли в разряд касательных реакций связей. В предыдущих разделах книги в вопросах, связанных с изучением движения машины под действием приложенных сил, на основе законов передачи работы, мощности, сил и моментов, эти касательные реакции, или силы трения, учитывались косвенным образом через к. п. д. или коэффициенты потерь. Лишь знание законов трения позволит нам в явном виде вводить силы трения в уравнение движения и в построения, связанные с передачей сил и моментов, а это, в свою очередь, позволит теоретическим путем подходить к определению к. п. д. и потерь в машинах и получать усилия в частях механизмов, ближе отвечающие действительным условиям, чем если бы трение учитывалось только в конце построения в виде некоторых поправочных коэффициентов. Так как в общей классификации (см. гл. 1, п. 1) силы трения вошли в разряд касательных реакций связи, то в зависимости от того, в какого рода кинематических парах возникают касательные реакции, различают следующие основные виды трения  [c.254]

Этим объясняется встречающееся в технической литературе противоречие, заключающееся в том, что, например, в ремённых передачах (малые давления и скорости) рядом исследователей констатировано увеличение коэфициента трения при возрастании скорости, причём зависимость для коэфициента трения имеет следующий вид  [c.124]

Вся кинематическая цепь передачи размера осуществлена в виде упругих элементов, обеспечивающих отсутствие пар внешнего-трения и люфтов в зазорах.  [c.409]

Выбор типа СМ для конкретного узла трения проводят в зависимости от условий эксплуатации и основных параметров трущегося контакта, которые позволяют прогнозировать возможный вид смазки (см. 9.1.2) и ожидаемый вид изнашивания (см. 9.1.3), Рекомендации по выбору типа и вязкости смазочных масел для различных передач приведены в [9].  [c.208]

Опишите устройство и принцип работы ременной передачи. Что такое угол обхвата Какой функциональной зависимостью связаны между собой усилия в набегающей и сбегающей ветвях ременной передачи Как определяют передаточное отношение ременной передачи Чем отличается упругое скольжение от буксования Какие виды ремней применяют в ременных передачах Каковы области их применения Какими преимуществами и недостатками обладают клиновые ремни (в т. ч. многорядные) по сравнению с плоскими Каково оптимальное значение межосевого расстояния для плоскоременной передачи Каковы минимальное и максимальное значения межосевого расстояния для клиноременной передачи Для чего и какими способами осуществляют натяжение ременной передачи Что такое приведенный коэффициент трения в клиноременной передаче Какими преимуществами и недостатками обладают ременные передачи  [c.74]

Во втором разделе рассматриваются механические передачи, которые по классификации, рекомендованной в трудах Академии наук СССР, делятся на передачи зацеплением, передачи трением и передачи с применением в качестве передаточного звена жидкости или воздуха. Последний вид механической передачи в книге не рассматривается, как не предусмотренный учебной программой. Передачи зацеплением разделяются на передачи с непосредственным контактом (зубчатые,, червячные) и цепные передачи. Передачи трением по аналогии с передачами зацеплением разделяются на передачи непосредственным контактом, так называемые фрикционные передачи, и передачи трением с гибкой связью (ременные с плоскими или клиновыми ремнями)  [c.9]

Мы видим, что тепло, выделяющееся в электронной компоненте плазмы за счет столкновений с ионами, возникает, во-первых, благодаря передаче энергии от электронов к ионам, связанной с релаксацией температуры, и, во-вторых, благодаря работе силы трения. Имея в виду, что для плазмы, состоящей из электронов и одного сорта ионов,  [c.153]

Индикаторная работа Ьг, произведенная в действительности рабочим телом, однако, не может быть получена полностью в виде механической работы на валу двигателя. Трение в механизме передачи от цилиндра к валу, приведение в движение добавочных устройств, связанных с работой двигателя, как, например, клапанов и др., преодоление гидравлических сопротивлений нри обмене заряда отработанного воздуха свежим и т. п. поглощают часть работы.  [c.163]

Привод станка состоит из источника энергии (электродвигателя) и устройств, передающих движение от электродвигателя к рабочим органам (шпиндели, суппорты и др.). В станках движение от приводного электродвигателя к узлам осуществляется при помощи ремня, цепи или зубчатых колес (шестерен), которые называются передачами. Они передают вращение с одного вала на другой или превращают вращательное движение в прямолинейное. Валы вращаются в опорах, которые могут быть выполнены в виде подшипников скольжения (рис. 28) или подшипников качения (рис. 29). 1К шпинделю, его приводу и подшипникам предъявляются высокие требования, так как от их точности, правильного регулирования зависит хорошая работа станка, а главное его производительность. Для опор валов и шпинделей чаще применяются подшипники качения, так как в них потери на трение меньше, чем в подшипниках скольжения.  [c.41]

Оценка и применение. Из всех видов передач зубчатые имеют наименьшие габаритные размеры и потери на трение. Коэффициент потерь мощности одной зубчатой пары при тщательном выполнении и надлежащей смазке не превышает обычно 0,01 зубчатые передачи используют при мощностях, начиная от ничтожно малых (в приборах) до измеряемых десятками тысяч киловатт. Передаваемые моменты достигают 5-10 Н-м. Диаметры колес судовых установок, например, в передачах на гребной винт достигают 6 м. Зубчатые передачи могут работать в самых разнообразных условиях с окружными скоростями от ничтожно малых до 150 м/с и обеспечивают передачу движения между произвольно расположенными в пространстве валами без проскальзывания (или, как будет сказано ниже, с постоянным передаточным отношением).  [c.61]


Клиноременная и поликлиновая передачи. В этих передачах полезная нагрузка передается за счет сил трения между боковыми поверхностями ре.мня трапецеидального сечения и канавок шкива (рис. 8.4, 6). Из-за заклинивающего действия клиноременная передача по сравнению с плоскоременной обладает большей тяговой способностью. Вследствие этого при одинаковой передаваемой мощности она требует меньшего натяжения, создает меньшее давление на валы и опоры, допускает малые углы обхвата на шкивах и поэтому применима при больших передаточных числах, меньших межосевых расстояниях, а также при нескольких ведомых шкивах. Клиноременная передача лучше приспособлена для бесступенчатого регулирования скорости, для чего шкивы выполняют в виде раздвижных дисков,  [c.218]

Пружины — упругие детали, широко применяемые в машиностроении для амортизации ударов, виброизоляции, создания постоянных заданных сил (например, в передачах трением, тормозах), выполнения роли двигателя после предварительного аккумулирования энергии, измерения сил по величине упругих перемеш,ений и т. д. По виду воспринимаемой нагрузки пружины разделяют на пружины растяжения (рис. 16.1, а), сжатия (рис. 16.1, б, в, г), кручения (рис, 16.1, 5), изгиба (рис. 16.1, е). Упругие детали, составленные из листов одной ширины, но разной длины (рис. 16.1, ж), называемые рессорами, применяют в транспортном машиностроении. По форме пружины разделяют на витые цилиндрические (рис. 16.1, с, б), витые конические (рис. 16.1, е), тарельчатые (рис. 16.1, г). В качестве упругих элементов применяют также детали из резины (например, в упругих муфтах, амортизаторах и т. д.). Наибольшее распространение получили витые цилиндрические пружины из проволоки круглого сечения, При больших нагрузках применяют пружины с прямоугольным сечением витков.  [c.361]

Для применения метода эквивалентной линеаризации к задаче о влиянии зазоров в передаче к регулирующим органам в системе прямого регулирования с вязким трением в измерителе (п. 29) представим уравнения и неравенства (29. 6) этой задачи в следующем виде  [c.185]

При ЭТОМ ЧИСЛО зубьев шестерни выбирают минимально возможным для уменьшения размеров передачи. При частотах вращения п < 1000 мин для нулевых колес гу = 17...24 при укороченных зубьях можно принять -= 14. В быстроходных передачах (п> 1000 мин ) число зубьев шестерни для повышения плавности хода следует принимать 21 = 24.Г.26. Следует также иметь в виду, что с увеличением числа зубьев уменьшается трение в зацеплении и соответственно возрастает КПД передачи.  [c.96]

Фрикционные передачи с гибкой связью. В таких передачах движение с ведущего звена на ведомое передается за счет трения гибкого элемента о шкивы. Гибкий элемент выполняют в виде бесконечного (замкнутого) ремня, пассика или нити. Наиболее распространенные формы поперечных сечений гибкого элемента и шкивов показаны на рис. 10.6. Гибкие элементы изготовляют из хлопка, шерсти, шелка, синтетических нитей, резины, кожи, металла и др. Плоские ремни (рис. 10.6, а) выпускают резинотканевые (ГОСТ 23831—79), кожаные (ГОСТ 18697—73), хлопчатобумажные цельнотканые пропитанные (ГОСТ 6982—75). Размеры и материалы приводных клиновых ремней (рис. 10.6, б) выбирают по ГОСТ 1284.1—80 (СТ СЭВ 4481—84), ГОСТ 1284.2—80 и ГОСТ 1284.3—80.  [c.115]

В простейшей передаче звенья можно выполнить в виде двух конусов, совпадающих с аксоидами. Конусы прижимают друг к другу и благодаря возникающей на их поверхностях силе трения ведущее звено передает движение ведомому. Такие передачи называют фрикционными коническими передачами.  [c.7]

В процессе воздействия исполнительного органа рабочей машины на материал вся энергия двигателя расходуется на преодоление технологических сопротивлений (изменение формы тел, их состояния или положения) и механических — в самой машине. Законы изменения технологических сопротивлений выявляются в процессе специальных технологических расчетов. Обычно для расчетов механизмов они задаются в виде определенных силовых характеристик. Что касается механических сопротивлений, то они возникают в результате передачи силы от двигателя к месту воздействия исполнительного органа машины и проявляются в виде сил трения. На величину механических сопротивлений оказывают влияние также силы тяжести звеньев, сопротивление среды и др. Законы изменения механических сопротивлений не зависят от функций, выполняемых машиной, и потому они изучаются в курсе теории механизмов и машин.  [c.167]

Стальные колеса с закаленными рабочими поверхностями обеспечивают наибольшую компактность и высокий к. п. д. передачи, но требуют точного изготовления и малой шероховатости рабочих поверхностей. Наилучшие результаты получают при применении шарикоподшипниковой стали типа ШХ15. Передачи работают как в масле, так и всухую. Передачи, у которых одно колесо стальное, а другое пластмассовое, не требуют высокой точности изготовления и малой шероховатости рабочих поверхностей колес. Так как в этих передачах коэффициент трения больше, чем в передачах с металлическими колесами, то сила прижатия колес меньшая, но несколько ниже к. п. д. и больше габариты. Пластмассовые колеса выполняют из специальных фрикционных пластмасс или из текстолита (рис. 10.6, а). Эти передачи работают всухую. Прессованный асбест, прорезиненную ткань или кожу по стали или чугуну применяют в виде обшивок (рис. 10.6, б, в). В этом случае передачи работают всухую.  [c.121]

Разгрузку налов и подшипников применением многопоточности, замыкание осевых сил в шевронных передачах и раздвоенных зубчатых передачах с противоположным направлением углов наклона зубьев, при возможности направление силовых факторов навстречу один другому, проектирование дегалей способных к восприятию нагрузок нескольких видов вмест(3 введения отдельных деталей, разгрузка передач трения, работающих в переменном режиме, введением механизма еамозатягивания, обеспечивающего уменьшение сил прижатия с уменьшением полезной нагрузки.  [c.482]

Преобразование одного вида энергии в другой, а также совершение работы какой-либо машиной всегда сопровождается потерями. В основном это потери на яреодоление трения в машинах и механизмах передач.  [c.149]

Материалы, предназпаченные для работы в узлах трения скольжения, подразделяются на два основных вида — подшипниковые (антифрикционные), обладающие наименьшими коэффициентом трения и износа, и тормозные (фрикционные), применяемые в тормозах и в фрикционных передачах, муфтах и других подобных механизмах, по условиям работы которых требуются материалы с высоким коэффициентом трения (сцепления) и с минимальным изнашиванием.  [c.212]

На концы валов 1 н 2 насажены образцы 3 и 4 в виде poл кoв (для случая чистого качения или качения с проскальзыванием) с диаметрами 30-ь50 мм (обычно 40 мм Форма образцов показана на фиг. 116. Ролики вращаются вместе с валами в разные стороны. Нижний вал делает 200, верхний 180 об/мин, поэтому при образцах одинакового диаметра имеет место 10<> скольжения процент скольжения может быть изменён при изменении диаметров образцов. Нижний вал 2 покоится в трёх шарикоподшипниках верхний вал I лежит в шарикоподшипниках рамки 5, которая может поворачиваться вокруг оси5. Пружина/ создаёт нагрузку (25 -Р 200 кг) на образцы. Вал 2 приводится в движение от мотора через шестеренную передачу, позволяющую при помощи маятника 8 и грузов 9 уравновешивать крутящий момент, величина которого указывается на шкале 10. Связанный с маятником интегратор 11, 12, 13 даёт суммарную работу трения. Величина измеряемого крутящего момента составляет 0,1—150,0 кгсм. Счётчик указывает суммарное число оборотов. При помощи приспособлений 14 и 15 рамка 5 может  [c.202]


Выдавливание (или экструзия) отличается от других способов переработки термопластов непрерывностью, высокой производительностью процесса и возможностью получения на одном и том же оборудовании большого многообразия деталей. Выдавливание осуществляют на специальных червячных машинах - автоматах. Перерабатываемый материал в виде порошка или гранул из бункера I (рис. 8.16, о) попадает в рабочий цилиндр 3, где захватывается врашающимся червяком 2. Червяк продвигает материал, перемешивает и уплотняет его. В результате передачи теплоты от нагревательного элемента 4 и выделения теплоты при трении частиц материала друг о друга и о стенки цилиндра перерабатываемый материал переходит в вязкотекучее состояние и непрерывно выдавливается через калиброванное отверстие головки б. Расплавленный материал проходит через радиальные канавки оправки 5. Оправку применяют для получения отверстия при выдавливании труб.  [c.482]

При малой разности Zj — Zf получается большое передаточное отношение. Например, при Zf= 100, i= 101 = —100. Если выполнить ука-ванное устр. заодно с сателлитом в виде тонкостенной гибкой оболочки, как показано на сх. б, то получится В. Гибкость оболочки позволяет обеспечивать передачу движения с сателлита на ведомый вал и приспосабливаться к взаимодействию с жестким звеном при использовании 8] ев с малыми углами давления. Гибкость оболочки позволяет также иметь две зоны зацепления (сх. в). В этом случае обеспечивается симметрия нагружения генератора волн. Он нагружен со стороны вала мсшентом Та, а со стороны гибкого колеса — силами которые образуки пару сил, уравновешивающую момшт Tit. Водило с роликами или иное устройство, обеспечивающее деф(Н>мацию гибкого колеса, называют генератором волн (реже — волнообра-зователь). Для того чтоЙ задать гибкому колесу определенную начальную форму, генератор волн выполняют в виде симметричного кулачка ою-циального профиля (сх. г). Такой генератор называют кулачковым. На кулачок на девают специальный гибкий подшипник, чтобы уменьшить трение между гибким колесом и генератором волн. -  [c.43]

Гибкая связь конструктивно может быть выполнена в виде гладкой или перфорированной ленты, ремня, нити, пассика и т. д. Выбор типа гибкой связи определяется способом передачи движения от ведущего элемента к ведомому. При передаче движения посредством трения и закрепления концов гибкой связи на дисках (рис. 7.2, в) в качестве тела связи применяют ленту, струну, нить, тросик и передачу соответственно называют ленточной или передачей с искосрсдстоснпы сосДкнснисм. Такая передача имеет наибольшую точность, так как отсутствует скольжение ленты относительно шкивов, однако углы поворота последних ограничены.  [c.389]

Конус служит для передачи крутящего момента от шпинделя станка к инструменту. Передача осуществляется в результате трения, возникающего в процессе резания между поверхностями наружного конуса инструмента и внутреннего конуса шпинделя станка под действием осевой силы. Необходимо иметь в виду, что крутящий момент должен передаваться исключительно kohv om без участия лапки. Последняя предназначается только для облегчения выталкивания инструмента из шпинделя посредством клина, как указано на фиг. 15, а. Это требование особенно важно для спиральных сверл, как работающих в более тяжелых условиях по сравнению с зенкерами и развертками.  [c.94]

В настоящее время в машиностроении используется значительное число различных бесступенчатых передач, различающихся как по принципу работы, так и по конструкции. Существующие вариаторы по принципу работы и виду контакта рабочих звеньев можно разделить на а) передачи трением с непосредственньм контактом — фрикционные б) передачи трением с гибкой связью — ремнем в) передачи зацеплением с гибкой связью — цепные.  [c.270]

Материалы кожа, фероЭо или прорезиненная ткань по стали или по чугуну применяют в виде набоек, В частности, на колодки в колодочно-ременных передачах, на маховики во фрикционно-винтовых прессах и т. д. Применение этих материалов для катящихся тел вызывает повышенные потери на трение.  [c.429]


Смотреть страницы где упоминается термин Трение Виды в в передачах : [c.189]    [c.380]    [c.189]    [c.10]    [c.203]    [c.376]    [c.38]   
Детали машин Том 1 (1968) -- [ c.28 , c.29 ]



ПОИСК



Передачи трением

Трение Виды трения

Трение — Виды



© 2025 Mash-xxl.info Реклама на сайте