Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение гиперзвуковое

За 15 лет, прошедших со времени выхода в свет предыдущего издания, приобрели большое значение летательные аппараты с реактивными двигателями новых типов, обеспечивающими полет с большой сверхзвуковой (гиперзвуковой) скоростью, выход в космическое пространство и возвращение в плотные слои атмосферы. Это привело к быстрому развитию разделов газовой динамики, в которых изучаются течения разреженного газа, гиперзвуковые течения и движения жидкости и газа в электромагнитных полях в настоящем третьем издании книги изложены основы также и этих разделов современной газодинамики.  [c.9]


Определите коэффициент давления, а также производную р ((02= О х /Уос) на конусе, совершающем поступательное движение с очень большой (гиперзвуковой) скоростью Уоо = 3 км/с под малым углом атаки а = 0,1 и одновременно вращение с угловой скоростью О г = 5 1/с около точки, удаленной от острия на расстояние Хм = 5 м. Длина конуса х = 5 м половина угла при вершине р = ОЛ- Вычислите также аэродинамические коэффициенты и соответствующие вращательные производные.  [c.484]

Рассмотрим гиперзвуковые скорости. В работе [15] приведены зависимости для коэффициента волнового сопротивления, учитывающие особенности движения осесимметричных тел с такими скоростями. Для острого конуса  [c.505]

Вдув газа в пограничный слой получил широкое распространение как способ тепловой защиты, особенно в тех случаях, когда требуется сохранить внешние формы конструкции неизменными (передние кромки гиперзвуковых летательных аппаратов, их головные части и т. п.). В качестве вдуваемой охлаждающей среды используются специальные жидкости, пасты или порошки. При движении сквозь пористую стенку они превращаются в газ, который проникает в пограничный слой, изменяя характер течения.  [c.466]

При гиперзвуковых скоростях обтекания для расчета сопротивления тела и распределения давления используют теорию Ньютона. В современной ее интерпретации предполагается, что частицы не взаимодействуют между собой, а имеет место лишь взаимодействие частиц с телом. В этой теории предполагается, что при соударении теряется нормальная к телу составляющая количества движения (неупругий удар), а касательная составляющая количества движения не изменяется. В результате давление на поверхности тела рассчитывают по формуле Ньютона  [c.62]

При гиперзвуковых скоростях обтекания можно свести двумерную задачу обтекания тонкого тела к автомодельной одномерной задаче о сильном взрыве. Из анализа уравнений и теории подобия следует, что обтекание тела происходит так, как будто в каждом слое независимо от других имеет место вытеснение газа непроницаемым подвижным поршнем в направлении,, перпендикулярном движению тела, т. е. решение стационарной задачи аналогично решению некоторой нестационарной задачи с соответствующими заменами переменных. Эту теорию называют нестационарной аналогией, а соответствующий метод расчета — законом плоских сечений.  [c.63]


Впервые проблема тепловой защиты была сформулирована и получила интенсивное развитие в авиационно-космической технике в связи с решением задач гиперзвукового полета в атмосфере. При движении какого-либо тела со скоростями более чем в шесть раз превышающими скорость звука, в самом газовом потоке и на поверхности тела происходит целый ряд физико-химических превращений. В воздухе за ударной волной начинается диссоциация молекул кислорода, а затем и азота. На поверхности тела появляются очаги разрушения материала стенки. В тонком пристеночном слое выделяется тепловая энергия трения и происходит конвективный перенос тепла от газа к поверхности.  [c.6]

Течение между поверхностью тела и ударной волной дозвуковое, но по мере движения вдоль тела поток вновь разгоняется и по прохождении так называемой звуковой линии становится сверхзвуковым. Заметим, что после перехода через скачок в течение газа вдоль поверхности тела редко достигаются первоначальные значения чисел Маха, имевшие место в набегающем гиперзвуковом потоке, однако в отличие от обычных сверхзвуковых течений мы имеем здесь дело с высокотемпературным 28 газом. В этом плане течение за ударной волной близко по своим пара-  [c.28]

При движении тел с большими сверхзвуковыми и гиперзвуковыми скоростями в плотных слоях атмосферы происходит сильное нагревание, которое может привести к изменению агрегатного состояния твердого тела (оплавлению, испарению и последующему уносу газовым потоком материала поверхности). Для теплозащиты таких тел применяются специальные уносимые покрытия, при разложении которых в пограничный слой поступают газы с различными молекулярными массами. Разложение является результатом поверхностного пиролиза связки, деполимеризации, испарения, сублимации, горения, плавления, эрозии.  [c.322]

Немаловажно, что преобразование имеет в основном математический характер. В частности, оно не учитывает влияния на характеристики течения уровня акустической энергии, появляющейся в турбулентном потоке при гиперзвуковых скоростях. Возникающие при этом безвихревые пульсации создают звуковое давление, увеличивающееся с ростом числа Маха. Не ясно, каким образом эти пульсации усложняют ноле течения при очень боль-щих числах Маха и как они изменяют количество движения в пограничном слое.  [c.435]

В большинстве аналитических работ [1—3] рассматривалось только изолированное тело. Поскольку теплообмен в гиперзвуковом потоке играет огромную роль, в настоящей работе, посвященной обтеканию клина гиперзвуковым вязким потоком, мы учитываем также и влияние теплообмена. Вначале рассматриваются основные уравнения гиперзвукового вязкого потока, т. е. уравнения пограничного слоя в гиперзвуковом потоке. Введение температурной функции S и некоторых аппроксимаций, связанных с гиперзвуковым течением, интегральный метод энергии и количества движения снова привели к двум обыкновенным дифференциальным уравнениям относительно основных неизвестных толщины пограничного слоя о х) и функции теплоотдачи /(х).  [c.101]

Характеристики пленок представляют интерес при исследовании следующих процессов 1) течение жидкой пленки, образующейся при расширении насыщенного и влажного пара в решетках турбомашин 2) течение охлаждающей пленки в теплозащитных газовых завесах, образующихся при впрыскивании жидкости или вдувании холодного газа через специальные щели или поры в обтекаемой поверхности 3) движения жидкой пленки на оплавляющихся (вследствие аэродинамического нагрева при гиперзвуковых скоростях) поверхностях и др. Таким образом, задачи, связанные с образованием и течением пленок, весьма разнообразны и имеют большое прикладное значение. Ниже этим задачам и будет уделено основное внимание.  [c.278]

Проблемы ионизации и диссоциации газа, излучения и нагрева обтекаемых поверхностей приходится рассматривать при изучении движения космических аппаратов в разреженных слоях атмосферы с гиперзвуковыми скоростями.  [c.9]


Путем упрощения уравнений движения газа при больших значениях числа М в работах [1-4] удалось установить законы подобия при обтекании тел идеальным газом с большими сверхзвуковыми скоростями. В работе [4] показано, что при М сю обтекание тела произвольной формы стремится к некоторому конечному состоянию, которое достигается тем скорее, чем более затуплена передняя часть обтекаемого тела. Такое предельное состояние движения, которое характеризуется соотношением М со8 (п,ж) 1, где со8(п,х) — косинус угла между направлением набегающего потока и нормалью к поверхности тела в его передней части, будем называть, следуя работе [4], гиперзвуковым течением. Коэффициенты аэродинамических сил при гиперзвуковом течении становятся не зависящими от М (подобно случаю течений газа при весьма малых скоростях).  [c.25]

Первое из этих условий показывает, что отношение плотностей газа перед ударной волной и непосредственно за ней при гиперзвуковых течениях есть величина постоянная, зависящая лишь от 7. Отношение Р2/Р равно б при 7 = 1.4 и неограниченно возрастает, если 7 1. Если плотность газа во всем слое, заключенном между поверхностью головной части обтекаемого тела и ударной волной, имеет одинаковый порядок величины, то при 7 1 толщина этого слоя стремится к нулю. Это обстоятельство наводит на мысль упростить уравнения движения газа в слое, оценивая порядок величины различных членов, входящих в уравнения, и отбрасывая менее важные из них, аналогично тому, как это делается при выводе уравнений пограничного слоя в вязкой жидкости.  [c.28]

Лиз Л. Современное состояние аэродинамики гиперзвуковых течений. Сб. Проблемы движения головной части ракет дальнего действия . М. Изд. иностр. лит., 1959. С. 40-95.  [c.532]

При движении тела в газе число Маха равно отношению скорости тела V к скорости звука в газовой среде а. При М<С1 газы можно считать несжимаемыми. В воздухе сжимаемость необходимо учитывать при скоростях о>100 м/с (М>0,3). При М<1 движение называют дозвуковым, при М=1 —звуковым, при М>1 —сверхзвуковым, при М>5 — гиперзвуковым. Каждый из этих случаев имеет свои особенности.  [c.113]

Рассмотрим случай обтекания тонкого профиля с очень большими числами Маха (М 1) такое обтекание иногда называют гиперзвуковым. Будем продолжать, считать газ однородным, отвлекаясь от тех сложных процессов, которые на самом деле возникают в гиперзвуковых потоках за счет высоких температур, образуюш,ихся при торможении газа на поверхности тела и при прохождении сквозь поверхности сильных разрывов. Будем в настояш,ем параграфе пренебрегать явлениями диссоциации и последующей возможной рекомбинации молекул газа, ионизации газа и некоторыми другими физическими и химическими процессами, характерными для гиперзвуковых движений газа. К некоторым из этих существенных явлений мы вернемся в последней главе курса, где пойдет речь о более близкой к действительности модели газа, обладающего внутренним трением (вязкостью) и теплопроводностью.  [c.247]

Пользуясь общей идеей метода Ньютона, изложенного в предыдущей главе для плоского гиперзвукового движения, можно с некоторой степенью приближения применять только что полученные формулы и к тонким телам вращения, отличным от кругового конуса. Для этого достаточно сопоставлять углы полураствора конуса 0о с местными углами атаки на заданной поверхности тела вращения, т. е. полагать  [c.348]

Изучение газовых потоков такого рода представляет значительные трудности и не может войти в настоящий общий курс. Это составляет предмет специального курса гиперзвуковой аэродинамики. Желающих расширить и углубить свои знания в области аэротермодинамики гиперзвуковых движений невязкого газа отошлем к капитальной монографии В. В. Лунева Гиперзвуковая аэродинамика, Машиностроение , М., 1975.  [c.350]

Задачи этого рода приобретают особо важное значение в условиях сверхзвуковых, а еще больше, гиперзвуковых потоков, в которых увеличение роли обратного влияния пограничного слоя на внешний невязкий поток а, следовательно, и усиление взаимодействия между ними обусловливается сравнительно большой толщиной области гиперзвукового пограничного слоя. Причиной этой особенности гиперзвукового пограничного слоя является расширение газа при тех высоких температурах, которые обычно возникают в движениях с большими числами Маха, и сопутствующее этому расширению уменьшение плотности газа, а тем самым и уменьшение числа Рейнольдса, что влечет за собой увеличение роли вязкого трения на поверхности тела.  [c.700]

Показана существенная роль вязких эффектов (пограничного слоя, вду-ва, перехода из ламинарного режима течения в турбулентный) при определении нестационарных аэродинамических характеристик тонких притупленных тел при гиперзвуковых скоростях движения.  [c.1]

Первые три величины являются известными параметрами подобия при обтекании тонких тел гиперзвуковым потоком газа под большими углами атаки, полученными В. В. Сычевым. Последние определяют подобие нестационарного движения тела.  [c.57]

Однако движение реальных жидкостей связано и с другими физическими эффектами, которые не учитывались ни Навье, ни Стоксом, Так, в реальных газах при гиперзвуковых скоростях течения важную роль играют эффект релаксации, молекулярная диссоциация и ионизация ). Будущий специалист по гидромеханике, которому придется иметь дело с задачами, связанными со спутниками и их возвращением, должен дополнительно к уравнениям Навье — Стокса хорошо ознакомиться с химической кинетикой.  [c.49]


С л e т e p и. Клей, Переход ламинарного течения в турбулентное и последующее движение в следе за сферой при гиперзвуковых скоростях, Ракетная техника и космонавтика, № 9 (1962).  [c.188]

Остановимся подробнее на случае так называемых гиперзвуковых движений. Посмотрим, как ведёт себя число давления над пластинкой при весьма больших значениях числа М> т. е. когда  [c.100]

Остановимся опять на гиперзвуковых движениях. Здесь угол V будет мало отличаться от (см., например, построение V по рис. 4  [c.101]

Движение с очень большими сверхзвуковыми скоростями. Гиперзвуковые течения и обтекание тонких тел. В современной газовой динамике, имеющей дело со скоростями порядка нескольких километров в секунду, возникает много теоретических и практических вопросов, требующих изучения движения газа при очень больших значениях числа Моо. Обтекания с очень большими сверхзвуковыми скоростями обладают рядом специфических особенностей. В 14, а также в 19 мы уже обратили внимание на некоторые характерные свойства движений, в которых 1. В настоящем  [c.206]

Движение с очень большими сверхзвуковыми скоростями около тонких тел называют в современной литературе гиперзвуковыми.  [c.211]

Выведем теперь, используя наши оценки, важный принцип подобия, касающийся гиперзвуковых движений. Обратимся вновь к общим уравнениям движения, неразрывности и притока тепла для плоского стационарного случая.  [c.211]

Во втором случае — в случае гиперзвуковых движений — мы получим уравнения, совершенно аналогичные уравнениям (23.21) — (23.23) плоского случая. Вывод их очевиден и мы на нём не останавливаемся.  [c.248]

Движение атмосферы с дозвуковой скоростью 130 — гиперзвуковое 100, 211  [c.724]

В предлагаемом справочнике приведены обобщающие данные по методам расчета трения и тепломассообмена на телах, обтекаемых жидкостью и газом, на основе теории пограничного слоя. Справочник составлен по обычной схе.ме. Даны предпосылки теории механики жидкости и газа, затем рассмотрены методы расчета трения и теплообмена в ламинарном пограничном слое и, наконец, в турбулентном пограничном слое. В обоих случаях движение несжимаемой жидкости предшествует движению сжимаемой жидкости. При рассмотрении ламинарного погра.ничного слоя большое внимание уделено точным (автомодельным) методам расчета. Сообщаются также основные сведения по теории равновесных турбулентных слоев. В книгу включены те из приближенных методов расчета, которые согласуются с данными измерений и получили практическое применение. В справочник не включены сведения о влиянии химических реакций, возникающих при гиперзвуковых скоростях, на процесс течения в иограничном слое. Изложению этих сведений посвящена книга У. X. Дорренса [Л. 25]. В справочник по возможности не включены те данные по трению и тепломассообмену в турбулентном пограничном слое, которые достаточно полно изложены в монографии С. С. Кутателадзе и А. И. Леонтьева [Л. 48].  [c.4]

В работе [1] показано, что при М сю обтекание тела произвольной формы стремится к предельному состоянию, которое достигается тем скорее, чем более затуплена передняя часть тела. Такое предельное состояние движения, которое характеризуется соотношением со8 (п,ж) 1, где со8(п,х) - косинус угла между направлением набегаюгцего потока и нормалью к поверхности тела в его передней части, получило название гиперзвукового течения. В случае тел малой относительной толгцины при сохранении скоростного напора набегаюгцего потока р /2 и при подобном изменении формы тела в  [c.38]

При скоростях движения газа, сравнимых по величине или не слишком превосходящих скорость распространения в нем малых возмущений (скорость звука), возникают специфические для этих режимов движения явления, теоретический анализ которых, как было показано в предыдущих параграфах, представляет скорее вычислительные, чем принципиальные, трудности. Методы интегрирования уравнений пограничного слоя и программы численного их интегрирования на ЭВЦМ в этих случаях уже разработаны. Более серьезные трудности возникают при рассмотрении движений газа в пограничных слоях при очень больших сверхзвуковых, или, как иногда говорят, гиперзвуковых скоростях. Сопровождающие такого рода движения физико-химические явления очень сложны, и многие из них и до сих пор еще недостаточно изучены. Основное значение имеют явления, сопровождающиеся переходом механической энергии потока в тепловую. Это, прежде всего, разогрев газа при прохождении его через скачки уплотнения и особенно через мощную головную волну , образующуюся на тупоносых телах. Большое значение имеет также и диссипация механической энергии в тепло, происходящая в пограничных слоях.  [c.693]

Слабое взаимодействие (х ) Этот предельный случай подразумевает сравнительно малые гиперзвуковые скорости К <С. ) ж большие значения рейнольдсова числа (Reoo 1). Распределение давления в этом случае мало отличается от невозмущенного пограничным слоем. Исследование слабого взаимодействия с помощью асимптотических разложений по степеням малого параметра х не столь сложно и заключает в качестве нулевого приближения движение, не учитывающее взаимодействие.  [c.704]

Первые три параметра здесь представляют собой известные критерии подобия при стационарном обтекании тонких тел гиперзвуковым потоком под малыми углами атаки. Последние параметры определяют подобие нестационарного движения тонкого тела с малыми скоростями и впервые получены в работе Г. Ф. Теленина.  [c.54]

Гиперзвуковой след за тонким телом несколько отличается от следа за туными телами. В случае тонкого тела большие градиенты в потоке, вызванные головной ударной волной, несущественны и вязкий след распространяется в области, где параметры потока близки к параметрам набегающего нотока. Явления перехода различны, кроме того, возможно различны и величины турбулентных пульсаций, которые зависят от степени затупления тела. Область ближнего следа ограничена прямыми линиями, причем его первоначальная ширина несколько больше, чем поперечные размеры тела из-за толстого оторвавшегося вязкого слоя, затем ширина следа постепенно уменьшается вниз по потоку, достигая горла. В ближнем следе оторвавшийся вязкий слой играет важную роль. За горлом ширина следа растет пропорционально длине следа. Как упоминалось в гл. I, елед за тонким телом является холодным в отличие от горячего следа за тупым телом из-за отсутствия интенсивного нагрева, создаваемого возникающими ударными волнами, и более медленного роста следа. Кроме того, след за тонким телом охлаждается гораздо быстрее, чем за тупым телом. Эксперименты с острым конусом и конусом со сферическим затуплением, имеющими угол при вершине 20 , в интервале чисел Маха М от 2,66 до 4,85 показали, что донное давление и угол наклона поверхности следа одинаковы для обоих конусов, если одинаковы местное число Маха и число Рейнольдса, вычисленное по толщине потери импульса пограничного слоя у основания конуса [82]. Из-за высокой температуры в гиперзвуковом следе за тупым телом на течение в следе влияют свойства реального газа или физико-химические процессы, как, например, диссоциация, ионизация и рекомбинация. Время, требуемое для завершения процессов диссоциации и ионизации (и для обратных процессов), в сравнении со временем движения частиц газа существенно при определении регистрируемых эффек-  [c.126]


Теория гиперзвукового турбулентного следа, разработанная Лизом и Хромасом [6], касается главным образом процесса смешения, который определяет скорости диффузии и охлаждения следа за тупым телом при термодинамическом равновесии. В атой теории рассматривается структура следа за тупыми телами и предлагается упрощенная схема течения во внешней и внутренней частях следа. Граница между этими частями следа считается бесконечно тонкой и предполагается, что расширение границы внутреннего следа зависит только от градиента и величины энтальпии. Кроме того, рассматриваются два предельных вида турбулентной диффузии 1) турбулентность, обладающая локальным подобием , при котором поток в каждом сечении ведет себя как участок автомодельного турбулентного следа с малой скоростью, и коэффициент диффузии пропорционален местной потере количества движения или сопротивлению внутреннего следа на данном участке 2) замороженная диффузия, при которой коэффициент турбулентной диффузии зависит только от начального значения коэффициента сопротивления внутреннего следа в области горла. Если коэффициент диффузии известен, то можно проинтегрировать уравнения турбулентной диффузии для энтальпии и массовой концентрации. Были рассчитаны частные случаи нарастания внутреннего турбулентного следа и проведено сравнение с экспериментальными данными. Кроме того, рассчитан типичный  [c.169]

Одним из наиболее универсальных методов определения аэродинамических характеристик является метод, основанный на ударной теории Ньютона [15]. Его суть состоит в том, что вычисление аэродинамических коэффициентов осуществляется путём интегрирования динамического давления по незатенённой внешней поверхности тела. При этом считается, что соударение частиц газа с телом носит неупругий характер, т. е. происходит гашение нормальной к поверхности составляющей количества движения потока. Метод Ньютона находит особенно широкое применение в тех случаях, когда аппарат имеет несложную конфигурацию, а скорость полёта достаточно велика и обеспечивает гиперзвуковое обтекание (М >6). Он может быть эффективно использован для приближённых аэродинамических расчётов на ранних этапах формирования облика и проектирования космического аппарата.  [c.54]


Смотреть страницы где упоминается термин Движение гиперзвуковое : [c.163]    [c.476]    [c.479]    [c.69]    [c.103]    [c.474]    [c.354]    [c.26]    [c.498]    [c.259]   
Теоретическая гидромеханика Часть2 Изд4 (1963) -- [ c.100 , c.211 ]



ПОИСК



Движение с очень большими сверхзвуковыми скоростями. Гиперзвуковые течения и обтекание тонких тел

Крыло в плоскопараллельном сверхзвуковом потоке. Приближённые формулы Аккерета, Буземана, Донова. Гиперзвуковые движения



© 2025 Mash-xxl.info Реклама на сайте