Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пленки Характеристики

Экспериментальные исследования двухфазных пограничных слоев требуют специальных измерительных приборов, позволяющих определять толщины пленок,, характеристики волновых процессов на поверхностях раздела, распределение скоростей и режимы течения в пленках измерять распределение скоростей в парокапельной области слоя, напряжение трения на обтекаемой поверхности. Ниже рассмотрены некоторые методы и приборы, разработанные и используемые в МЭИ.  [c.61]


Наряду с методами, входящими в систему моделирования и оптимизации, для общей характеристики ПИНС всех типов и их классификации используется ряд известных методов, оценивающих вязкость составов в растворителе, толщину их пленки, характеристики активного вещества.  [c.86]

СВЯЗЯМ. Приобретая за этот счет сетчатую структуру, облученный полиэтилен теряет свою термопластичность, становится практически неплавким, сохраняя склонность к старению на воздухе при повышенной температуре. Облученный полиэтилен имеет повышенные нагревостойкость, механическую прочность и химостойкость. Облучению обычно подвергают готовые детали или пленку. Характеристики полиэтилена (необлученного) приведены в табл. 5-1.  [c.159]

Характеристика изучаемого металла включает сведения о его химическом составе (основных составляющих и примесях), структуре (характере структуры, величине зерна, величине структурных составляющих, характере и количестве неметаллических включений), способе изготовления (литой, горячекатаный, холоднокатаный металл, его термообработка, характер и степень деформации), состоянии поверхности (наличие естественной окис-ной пленки, окалины, литейной корки, метод обработки и степень чистоты поверхности), происхождении (металл заводской плавки, опытной плавки, технология плавки). Характеристика коррозионной среды содержит данные о составе, концентрации  [c.429]

Более полное представление об изменении основных характеристик исследуемой системы можно получить из представленных на рис. 6.15 данных для этого же образца. Здесь изображенный на рис. 6.14 переходный процесс выглядит в виде скачка всех рассмотренных параметров при постоянной плотности теплового потока qjq =1,13 (нормирующая величина q" рассчитывается из соотношения q" = G(i - to). Слева от значения qlq = 1,13 расположена область режимов с кипящей пленкой, справа — с полностью сухой внешней поверхностью. Здесь отчетливо видно, что в режимах с кипящей пленкой при значительном увеличении тепловой нагрузки все остальные параметры системы остаются практически постоянными, затем они испытывают скачкообразное изменение в режиме высыхания внешней поверхности и далее быстро возрастают при незначительном увеличении тепловой нагрузки в режимах с полностью сухой поверхностью. Вертикальными стрелками указано направление изменения параметров в переходном процессе, например точки а, с соответствуют температуре внешней поверхности и перепаду давлений на стенке в начале переходного процесса г = О (см. рис. 6.14, точки в, с),  [c.148]


Характеристики тонких смазочных пленок в условиях тяжелонагруженного контакта (температура 70 °С) приведены ниже  [c.148]

Нитевидная коррозия не зависит от освещения, металлургических характеристик стали и наличия бактерий. Хотя нити видны только под прозрачными лаками и эмалями, они, вероятно, достаточно часто образуются под светонепроницаемыми пленками краски. Появление нитей наблюдалось при использовании различных типов связующего и на различных металлах, включая сталь, цинк, алюминий, магний и хромированный никель. На стали этот вид коррозии наблюдается только на воздухе с большой относительной влажностью (например, 65—95 %). При 100 % относительной влажности нити могут расширяться, вспучивая покрытие. Если пленка относительно непроницаема для воды, то нити могут вовсе не образоваться, как это установлено в случае парафина [14]. Нитевидная коррозия может служить характерным примером явлений, связанных с образованием элементов дифференциальной аэрации.  [c.256]

Определение теплофизических характеристик рассматриваемых нами покрытий связано с двумя основными трудностями. Во-первых, число известных методов для определения теплофизических коэффициентов тонких слоев (толщина в десятые и сотые доли миллиметра) весьма ограниченно. Это объясняется те.м, что в ряде случаев требуется точное измерение температуры внутри образца, как правило, в двух точках. Такие измерения, естественно, не удается осуществить в тонких пленках, так как при незначительной толщине исследуемого слоя его термическое сопротивление оказывается соизмеримым с термическим сопротивлением контактов термопар, что приводит к большим неточностям при абсолютных измерениях.  [c.122]

Изучение состояния поляризации можно провести как в отраженном, так и в проходящем свете. В случае металлов преломленная волна практически поглощается в очень тонком поверхностном слое. Поэтому в данном случае целесообразно использовать измерения в отраженном свете. Наоборот, при слабом отражении от диэлектриков основным методом исследования является эллипсометрия в проходящем свете. В тех случаях, когда возможны соответствующие измерения в отраженном и проходящем свете, эллипсометрия в отраженном свете удачно дополняет эллипсометрию в преломленном свете, и наоборот. Следует отметить, что эллипсометрия позволяет не только определять оптические константы чистых поверхностей материалов, она позволяет также, исходя из непосредственно измеряемых параметров эллипса поляризации, определить характеристики тонких поверхностных пленок, возникающих вследствие адсорбции и т. д., например толщину (вплоть до долей ангстрема) и показатель преломления (с точностью до 10" ) поверХНОСТНОГО слоя.  [c.64]

Механизм переноса вещества в волновой пленке при проявлении когерентных структур назван нами спиновым, поскольку перенос в этом случае существенно зависит от характеристик волны. Выражение для коэффициента массоотдачи по спиновому механизму имеет вид [1, 32]  [c.24]

Турбулентный режим. Как отмечалось ранее, течение волновой пленки жидкости и массообмен в ней имеет ряд характеристик, свойственных турбулентному режиму. Это, в первую очередь, наличие пульсационной составляющей в распределении скорости и турбулентного потока вещества в суммарном переносе субстанции. При турбулентном режиме подобные составляющие, в отличие от рассмотренных ранее при волновом течении, имеют случайный характер. Корреляция случайных величин (будь то скорости или концентрации) остается неизвестной, поэтому приходится пользоваться теми или иными моделями, отличающимися между собой как точность  [c.26]

Интерферометр Фабри—Перо. Интерферометр, или эталон Фабри—Перо, является в настоящее время основным прибором в спектроскопии высокой разрешающей силы. Его действие основано на интерференции большого числа лучей, получаемых при многократном отражении световой волны между двумя параллельно расположенными плоскими зеркалами, обладающими частичным пропусканием (рис. 26). В современных интерферометрах, как правило, используют многослойные диэлектрические зеркальные покрытия, которые наносят на подложки из оптического стекла или кварца в вакууме. Они позволяют получать высокие коэффициенты отражения света при малой величине потерь на поглощение. Худшие характеристики имеют покрытия из тонких пленок серебра и алюминия.  [c.76]


Метод касания основан на непосредственном измерении толщины пленки с помощью зонда. Установив острие зонда на поверхность стенки, на координатной шкале прибора фиксируют нулевую отметку. Перемещая зонд к поверхности пленки со стороны газовой среды, фиксируют момент касания и определяют по шкале прибора толщину пленки. Момент соприкосновения острия зонда с поверхностями стенки и пленки определяется электрическим способом по падению напряжения в цепи зонд — пленка — стенка или изменению сопротивления в момент контакта. Применение усилителей в сочетании с малоинерционными регистрирующими приборами (шлейфовые и электронные осциллографы) позволяет методом касания определять не только локальную толщину пленки, но и некоторые волновые характеристики течения. Основные недостатки метода касания связаны с возмущениями, вносимыми зондом в исследуемую среду, и трудоемкостью получения информации о состоянии обширной поверхности пленочного течения.  [c.252]

Ко второй группе относят методы, основанные на введении в поток чувствительного элемента. Характеристики турбулентности в этом случае определяют по изменению физических, химических или механических свойств чувствительного элемента при его взаимодействии с движущимся потоком (нагретые нити, пленки,  [c.257]

Назначением твердого носителя является удерживание тонкой равномерной пленки жидкой фазы. Оптимальный твердый носитель должен обладать следующими характеристиками большой удельной поверхностью (от 1 до 20 м /г) малым и одинаковым  [c.300]

Физика твердого тела в настоящее время — это обширная область науки, тесно связанная с другими разделами физики и смежными дисциплинами. В недрах физики твердого тела и на ее стыках с химией, биологией, геологией, механикой, математикой, атомной и ядерной физикой, радиофизикой, физикой космоса, техникой возникли и стремительно развиваются химия твердого тела, молекулярная биология, радиационная физика твердого тела, твердотельная электроника, космическое материаловедение, физика полупроводников, физическое материаловедение, физика и техника низких температур, физика магнитных пленок и т. д. Эти области столь близко соприкасаются с физикой твердого тела, что знание основ последней необходимо каждому специалисту, активно работающему во всех перечисленных направлениях. Следует добавить, что синтез физики твердого тела и теоретической физики привел к созданию теории твердого тела, опирающейся на современные достижения квантовой механики, статистической физики, теории поля и широко использующей быстродействующие ЭВМ для проведения многочисленных трудоемких расчетов и численного моделирования различных явлений в твердых телах. Многие достижения физики твердого тела нашли непосредственный выход в практику. Результатом оказалось создание новых типов материалов с уникальными характеристиками и даже целых отраслей техники.  [c.5]

Четвертая глава учебного пособия посвящена течению в жидких пленках. Здесь, как и в предыдущей главе, перед авторами стояла задача отобрать наиболее существенное из чрезвычайно широкого круга вопросов, рассматриваемых в специальной литературе. Мы остановились на анализе течения ламинарных пленок, их устойчивости (в линейном приближении), а также на анализе усредненных характеристик турбулентных пленок. Эти начальные знания гидродинамики пленочного течения дают необходимую основу для изучения более сложных задач, встречающихся в инженерной практике. Четвертая глава знакомит читателя с задачами теплообмена, в данном случае — с классической задачей Нуссельта о конденсации пара на вертикальной плоскости и с задачей о теплообмене при испарении пленки. Рассмотрение этих вопросов оправдано, поскольку жидкие пленки чаще всего встречаются в различного рода теплообменных устройствах.  [c.7]

В 1948—1949 гг. появились две статьи П.Л. Капицы [14, 15], которые оказались основополагающими в изучении проблемы волнового режима течения жидких пленок. В первой из них [14] была изложена приближенная теоретическая схема описания закономерностей развитого волнового течения. В частности, отмечалось, что волновой режим течения является основным гидродинамическим режимом для стекающих пленок. Во второй [15] были представлены экспериментальные результаты измерений характеристик волнового течения пленок по вертикальной поверхности. Эти работы стимулировали последующие исследования как теоретического.  [c.162]

Авторы утверждают, что при изменении температуры и химического состава лсидкости сигналы на выходе усилителя будут зависеть только от толщины лленки над соответствующими датчиками. В опытах использовались стержневые датчики в виде двух электродов, расположенных на определенном расстоянии. Как показали исследования резистивных и емкостных датчиков толщины пленки, требование хорошей линейности на нужном диапазоне (1 мм) находится в противоречии с линейными размерами датчиков. Стремление уменьшить датчики приводит к сужению диапазона измерений, и практически как для резистивных, так и для емкостных датчиков расстояние между электродами должно быть примерно равно толщине измеряемой пленки жидкости. Как известно, коаксиальные датчики не нуждаются в ориентировке в зависимости от направления течения. В [117] применялись стержневые датчики, установленные поперек канала. В этом случае, используя сравнительно небольшие по диаметру электроды (0,4—1,2 мм) при умеренных расстояниях между ними (1—4 мм), удалось добиться хорошей локальности измерений толщин пленок. Характеристики подобных стержневых резистивных датчиков толщины пленки приведены на рис. 2.30. Характеристики стержневых датчиков при прохождении скачка толщины пленки, характерного для срывного режима, рассмотрены в [148]. Импульс изменения проводимости передается с искажениями, затягивающими импульс. Проводимость датчика начинает изменяться до появления скачка над центром датчика.  [c.64]


Синтетические пленки представляют собой продукт переработки термопластичных полимеров. Подавляющее большинство термопластов может быть переработано в пленки, однако для пневматических конструкций они далеко не все применимы. Как уже отмечалось, под воздействием солнечной радиации и воздуха пленки стареют , причем в значительно большей степени,, чем ткани, в результате чего срок службы большинства пленок ограничивается одним-двумя годами. Кроме того, пленки обладают повышенной деформативностью. Из производимых в. СССР пленок наиболее применимыми с точки зрения атмосфероустойчивости, долговечности и деформативности являются полиэтиленовые, полиамидные и полиэтилентерефталатные (полиэфирные) пленки. Характеристики некоторых пленок, производимых в СССР, приведены в табл. 48 [21, 22].  [c.261]

Тепловые процессы в потоке газовзвеси протекают весьма сложно. Теплообмен осуществляется путем распространения тепла в газовой фазе передачи тепла твердой частице теплопроводности внутри частицы отдачи тепла этой частицей менее нагретому газовому элементу либо соприкасающейся другой твердой частице радиационного теплообмена газа с частицами, частиц друг с другом и со стенкой канала теплопроводности в ламинарной газовой пленке и в контактах частиц со стенкой. Влияние направления теплового потока на теплообмен с потоком газовзвеси и с чистым потоком в принципе различно, поскольку, кроме изменения физических характеристик газа, следует учесть изменение поведения и твердых частиц. Для охлаждения газовых суспензий существенны силы термофореза (гл. 2), которые могут привести к загрязнению поверхности нагрева и как следствие— к снижению интенсивности теплообмена при  [c.181]

Хотя между коррозионной стойкостью металлов, которая характеризуется скоростью протекания термодинамически возможных электрохимических коррозионных процессов, и их термодинамическими характеристиками [например, (1 л1Лобр1 и наблюдается некоторое соответствие (щелочные и щелочноземельные металлы наименее устойчивы, а благородные металлы наиболее устойчивы), однако между ними нет простой однозначной зависимости. Металл, нестойкий в одних условиях, в других условиях часто оказывается стойким. Это обусловлено тем, что протекание термодинамически возможного процесса бывает сильно заторможено образующимися вторичными труднорастворимыми продуктами коррозии, пассивными пленками или какими-либо другими факторами. Так, термодинамически весьма неустойчивые Ti, А1 и Mg (см. табл. 28) в ряде сред коррозионностойки благодаря наступлению пассивности.  [c.324]

Масла для смазки многооборотных подшипников должны обладать малой вязкостью, пологой вязкостно-гемиературной характеристикой и способностью образовывать на мета.тлпческп.х поверхностях прочные молекулярные пленки.  [c.542]

На рис. 6.14 показано изменение во времени основных характеристик системы в одном из тех редких режимов, когда высыхание внешней поверхности произошло медленно после длительной вьздержки и вызвало умеренное повышение ее температуры. Эти данные интересно сопоставить с результатами визуального на юдения. В интервале 1 на внешней поверхности имеется сплошная узкая полоска пленки по краю, в интервале 11 она разорвалась на отдельные пятна, быстро перемещающиеся по периферии, а в интервале Ш вся поверхность сухая.  [c.147]

Закономерности, определяющие потери давления в изотермическом потоке газ — жидкость, изучались в работе [499]. Получены данные о толщине пленки, высоте волн и потерях дав.ления при двухфазном кольцевом течении [712, 888]. Исследования такой системы выпо.лнены также в работах [.367, 403, 450, 534]. Интерес к ней связан с проблемами теплооб мена и потерь давления при кипении, подробно рассмотренными в ряде работ [428, 647]. Здесь мы не будем детально разбирать эти вопросы. В работе [801] исследовано пузырчатое кипение воды с частицами окиси тория. Некоторые количественные характеристики твердых веществ, образующих суспензии, снижающие или повышающие коэффициент теп.лоотдачи при пузырчатом кипении в зависимости от  [c.164]

Этот воспроизводимый Фладе-потенциал и его зависимость от pH с коэффициентом 0,059 являются важнейшими характеристиками пассивной пленки на железе. Аналогичная взаимосвязь pH и потенциала найдена для пассивных пленок на хроме, Сг—Fe  [c.73]

В зависимости от толщины пленки и величины сил предварительного натяжения замеренные прогибы и объемы будут различными. Чтобы исключить влияние жесткости пленки, одновременно с исследуемым сечением на том же приборе производится обмер пленки с круговым очертанием. Для бруса кругового, сечения жесткость и напряжения могут быть определены расчетным путе.м. Поэтому оказывается возможным, сопоставляя результаты замеров, найти требуемые характеристики задамно1 о сечения по характеристикам кругового сечеш. я из соображений пропорциональности.  [c.96]

Отметим также работу Хонинга [70], который показал принципиальную возможность распыления карбида кремния с помощью ионов аргона для получения покрытия. В работе [67] описаны способы получения с помощью напыления в вакууме стеклянных пленок. Рассмотренные выше исследования показывают принципиальную возможность нанесения неорганических неметаллических материалов на металлы различными способами испарения в вакууме. Однако об излучательных характеристиках полученных покрытий не сообщается.  [c.107]

Решение нелинейного уравнения (1.3.5) с граничными условиями (1.3.6) подробно глзедставлено в [1]. В частности, получена полная информация о течении волновой пленки (распределение скоростей, изолиний функции тока) и ее характеристиках (амплитуда, длина волны, фазовая скорость и т.д.).  [c.19]

Хотя расчеты по модели авторов работы (39 и модели Левина 38 мало различаются, модель (1.3.29) интересна тем, что подзверждает наличие двух характерных размеров при течении систем с поверхносг1)Ю раздела, что было доказано ранее. Причем, один из характерных размеров обусловлен физико-химическими свойствами поведения поверхности пленки жидкости и, вероятно, является одной из важных характеристик течений с поверхностью раздела фаз.  [c.27]

Массоперенос в режиме восходящего прямоточного течения. В высокопроизводительных высокоскоростных массообменных аппаратах массоперенос в пленку жидкости осуществляется в интенсивных гидродинамических режимах. Пленка жидкости при значительных касательных напряжениях на поверхности раздела фаз поднимается вверх. Происходит движение пленки жидкости в спутном потоке газа. За счет интенсивного взаимодействия газа массоперенос значительно ускоряется. Коэф-фиг(иент массопереноса зависит от режимных параметров обеих фаз. Вопрос о механизме ускорения массопередачи до настоящего времени остается откр(.1тым, хотя известна гипотеза, объясняющая ускорение влиянием газового потока на волновые характеристики, имеющие в снутном потоке характер случайных величин [1, 44, 45 .  [c.29]

Примером проявления синфазности на телах, активно взаимодействующих со сплошной средой, является массообмен в волновую пленку, стекающую но стенкам канала с регулярной шероховатостью. В результате такого взаимодействия, при определенных геометрических соотношениях длины регулярной шероховатости и ее высоты, сплошная среда повторяет структуру регулярной шероховатости. В этом случае синфазность гидродинамических и концентрационных полей достигаетея только при определенных соотношениях геометрических характеристик контакти-руемой среды (формулы (1.3.22)-(1.3.23)).  [c.31]


По заданнрлм полям температур, скоростей определяются необходимые гидродинамические и теплообменные характеристики. В частности, по формуле (1.5.18) определяют изменение расхода жидкой пленки на участках Лц и x + Ах.  [c.38]

Квантовый размерный эффект — осцнлляционная зависимость термодинамических и кинетических характеристик тонких пленок т) ердого тела от толщины пленки, связанная с квантованнем электронных уровней.  [c.282]

Для получения данных о скоростях и траекториях движения частиц наиболее часто используют бесконтактные методы измерений, среди которых широкое распространение получили скоростная киносъемка и фоторегистрация потока. Фоторегистрация и киносъемка в настоящее время используются и для исследования внутренних характеристик процессов конденсации и кипения. Так траектория и скорость частиц могут быть определены фоторегистрацией путем экспонирования пленки двумя последовательным импульсами света различной длительности. В результате такога экспонирования изображение дисперсного компонента на пленке-фиксируется в виде парных штрихов, имеющих различную протяженность. Зная масштаб съемки и продолжительность импульсов света, по фотограммам потока легко определить траектории частиц, и их скорость. Этот метод применяют в потоках с невысокой концентрацией дисперсного компонента (ф<0,05), когда возможны. наблюдение и регистрация на пленке отдельных частиц.  [c.248]

Изложены общие принципы ноетроення математического описания многофазных систем особое внимание уделено 1)ормулировке универсальных и специальных условии совместности на межфазных границах. Анализируется гидростатическое равновесие газожидкостных систем волновое движение на поверхности тяжелой жидкости, классические неустойчивости Тейлора и Гельмгольца гидродинамика гравитационных пленок. Рассмотрены закономерности стационарного движения дискретной частицы (капли или пузырька) в несущей фазе, механизм и количественные характеристики роста паровых пузырьков в объеме равномерно перегретой жидкости и на обогреваемой твердой стеикс. Приводятся характеристики течения газожидкостных потоков в канале, методы расчета истинного объемного паросодержания и трения в потоках различной структуры методы расчеты теплообмена и кризисов при пузырьковом кипении в трубах.  [c.2]

В [1, 5] также приводятся результатьг экспериментальных и теоретических (в нелинейной постановке) исследований характеристик развитого волнового течения пленки. Волны, качественный анализ которых был дан в п. 4.3.1, строго говоря, во многих случаях не могут анализироваться в рамках линейной теории, поскольку их амплитуда нередко превосходит среднюю толщину пленки 5q (хотя условие а X обычно выполняется). Возможности теоретического исследования волн конечной амплитуды, как упоминалось в п. 3.3.5, весьма ограничены. Стационарные уединенные волны, фазовая скорость которых определяется уравнением (3.23), возможны и наблюдаются в экспериментах с гравитационными пленками. Однако во многих экспериментальных установках и технических аппаратах длина поверхности в направлении течения, по-видимому, бывает  [c.171]


Смотреть страницы где упоминается термин Пленки Характеристики : [c.137]    [c.9]    [c.347]    [c.26]    [c.129]    [c.448]    [c.227]    [c.160]    [c.810]    [c.21]    [c.26]    [c.32]    [c.172]   
Справочник металлиста Том 2 Изд.2 (1965) -- [ c.357 , c.361 , c.363 , c.364 ]



ПОИСК



Вопросы измерения характеристик тонких ферромагнитных пленок

Измерение толщин жидких пленок и характеристик двухфазного пограничного слоя

Пленка радиографическая — Классификация 1 кн. 283, 284 — Основные зависимости 1 кн. 286 — Технические характеристики

Пленка радиографическая — Классификация 1 кн. 283, 284 — Основные зависимости 1 кн. 286 — Технические характеристики цветная ¦— Строение

Пленки радиографические 262 - Классификация и характеристики 262 - Номограммы

Пленки радиографические 262 - Классификация и характеристики 262 - Номограммы для определения времени экспозиции

Пленки радиографические 313 — Классификация 314 — Основные характеристики

Толщина и характеристики волновой поверхности жидкой пленки



© 2025 Mash-xxl.info Реклама на сайте