Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в балках в балках при кручении

Допускаемое напряжение при С. для таких материалов, как железо, сталь, медь, обыкновенно принимается равным 0,8 Ез, где Ед— допускаемое напряжение на растяжение лучше согласуются с опытными данными величины 0,5 г, полученные на основании т. н. 3-й теории прочности (см.), по которой разрушение тел зависит но от нормальных, а от касательных напряжений. Явление сдвига в чистом виде встречает-ся в кручении (см.), а в более сложной форме—в изгибе, где кроме основных нормальных напряжений, вызываемых изгибающим моментом, возникают касательные напряжения от действия перерезывающей силы они малы в длинных балках и довольно заметны в коротких (см. Изгиб). Многие детали инженерных сооружений испытывают касательные напряжения. Так, соединительный болт (фиг. 3) под действием растягивающей силы Р может разрушиться от касательных напряжений в сечениях аЬ и d, Такой тип разрушения называется срезыванием. При расчете такого  [c.222]


Б 1909—1910 гг. Бах испытал на совместное действие изгиба и кручения швеллерную балку № 30 длиной 3 м, нагружая ее двумя сосредоточенными силами в третях пролета, причем как нагрузка, так и опорные реакции проходили параллельно стенке — в одном случае через центр самой стенки, а в другом— через центр тяжести всего сечения. Результаты испытаний показали весьма неравномерное распределение напряжений в полках, в то время как по обычному способу расчета они на одинаковом расстоянии от нейтральной плоскости получаются одинаковыми.. Неравномерность распределения напряжений при нагрузке в главной вертикальной плоскости оказалась большей, чем при нагрузке балки в средней плоскости стенки в крайней части сжатой полки в первом случае появились растягивающие напряжения. На основании этих опытов Бах сделал не совсем правильные выводы. Неравномерность распределения напряжений в швеллере он объяснил несимметричностью. сечения.  [c.4]

Открытые тонкостенные профили плохо работают на кручение. Кроме того, если балка защемлена, то вследствие отсутствия депланации поперечного сечения в защемлении в балке возникнут также значительные нормальные напряжения. Поэтому нельзя допускать появления кручения при изгибе балок тонкостенных профилей.  [c.142]

В задаче об изгибе балки ( 25) напряжение в предельном состоянии испытывает при переходе через нейтральную плоскость скачок от -1-0 к —о . Для задачи чисто пластического кручения также характерно наличие линий разрыва, вдоль которых касатель-  [c.159]

В качестве примера рассмотрим расчет задней поперечины надрамника автомобиля-самосвала ЗИЛ-ММЗ-555 (рис. 64). В данном случае учет деформаций сдвига в большей степени влияет на расчетные напряжения, возникающие в задней балке при кручении от вынужденной деформации надрамника с рамой, чем на расчетную жесткость надрамника, так как большая часть стержней имеют нормальную длину.  [c.114]

При несимметричном сечении балки следует ожидать и несимметричного распределения касательных напряжений в этом сечении. В таком случае перерезывающее усилие, оставаясь равным и параллельным поперечной силе, не будет проходить через центр тяжести поперечного сечения. Таким образом, обе эти силы составят пару сил, действующую в плоскости поперечного сечения балки (рис. 185), и вызовут кручение балки, причем, так как поперечные силы, а следовательно, и перерезывающие усилия, вообще говоря, переменны по длине балки, то величина крутящего момента балки также будет переменной по длине балки. Только в том случае, когда нагрузка, приложенная к балке, действует не в плоскости, проходящей через центры тяжести сечений (через ось) балки, а в плоскости, проходящей через точку Сь кручение будет отсутствовать и, следовательно, балку несимметричного сечения можно рассчитывать так же, как балку симметричного сечения. Точка Си т. е. та точка сечения, через которую должна проходить плоскость действия сил,  [c.292]


Прочность и устойчивость балок проверяется, в общем случае, по нормальным напряжениям, возникающим от максимальных изгибающих моментов в вертикальной и горизонтальной плоскостях, и изгибно-кру-тящего бимомента в среднем сечении разрезной балки и первого пролета неразрезной. При этом учитываются и местные напряжения, возникающие в полках нижнего пояса от давления катков тележки. Кроме того, в неразрезных балках асимметричного сечения с узким нижним поясом проверяется устойчивость среднего пролета в условно трехпролетной балке при грузах в крайних пролетах (вызывающих сжатие нижнего пояса). Касательные напряжения от изгиба в обеих плоскостях и кручения, имеющие обычно незначительную величину, не проверяются.  [c.68]

Явление, при котором балка теряет устойчивость и изменяет форму при изгибе, называется потерей общей устойчивости балки. В этом положении происходит кручение балки, отклонение поясов в плане (рис. 42). При общей потере устойчивости в балке возникает сложное напряженное состояние, связанное с появлением изгиба в вертикальной плоскости х — х, горизонтальной плоскости у — уч кручения вокруг продольной оси балки.  [c.67]

Двутавровая балка, шарнирно-опертая на концах, нагружена равномерно распределенными крутящими моментами т = = 1 кН-м/м и равномерно распределенной нагрузкой = 50 кН/м, которая расположена в главной плоскости балки zOy (рис. а). Вычислить наибольшие напряжения а , Тщ и Тц и определить наибольшие нормальные и касательные напряжения и х у, возникающие при поперечном изгибе построить эпюры О ш) Тщ, СТ И а = + а . Заданы наибольшие главные секториальные координаты в точках / и 3 профиля соо = 137,9 см и в точках 2 и 4 — о)о = —137,9 см (см. рис. а) секториальный момент инерции Jo> = 247 210 см геометрическая характеристика сечения при чистом кручении = = 96,55 см изгибно-крутильная характеристика k = 0,0122 m момент инерции = 23 850 см статический момент полусечения относительно нейтральной оси = 718,4 см . Размеры сечения на рис. а даны в сантиметрах.  [c.234]

Как известно, открытые тонкостенные профили плохо работают на кручение. Кроме того, если балка заделана так, что депланация сечения в заделке становится невозможной, то будет иметь место так называемое стесненное кручение, при котором в поперечном сечении возникают не только касательные, но и значительные нормальные напряжения. Поэтому желательно принимать меры, устраняющие кручение в балках прокатного профиля. Обычно по этой причине ставят симметричное сечение из двух швеллеров. Если же профиль один, а нагрузка значительна, то ее нужно выносить из главной плоскости так, чтобы она проходила через точку С (на рис. 313, б такое положение нагрузки показано пунктиром на рис. 313, г дан один из возможных вариантов конструктивного оформления вынесения нагрузки). В этом случае участок балки длиной х полностью уравновешивается силами Р, Q x) = P и моментом М х) = Рх кручения не будет. Поэтому точка С называется центром изгиба (иногда — центром жесткости). Центры изгиба всех сечений балки расположены на прямой, которая называется осью жесткости балки (рис. 313, б).  [c.340]

В силу линейности задач теории упругости решение задачи об определении напряженного и деформированного состояний балки под действием произвольно направленного момента М можно получить как сумму решений трех задач задачи о кручении под действием момента М и двух задач об изгибе балки под действием моментов Му и М - Ясно, что последние две задачи об изгибе балки, по существу, совершенно аналогичны. Рассмотрим подробно задачу об изгибе балки под действием заданного момента М = М, когда Му. = Му = 0. При этом, как обычно, будем считать момент М положительным, если поворот, возникающий под действием М, виден с конца оси 2 совершающимся против часовой стрелки.  [c.351]

Рассмотрим задачу о кручении цилиндрического стержня-балки. Кручение возникает в том случае, когда момент, действующий в концевом сечении балки, не лежит в плоскости поперечного сечения. В условиях кручения работает множество частей различных мапшн, в частности, валы гидротурбин и всевозможных (автомобильных, самолетных, пароходных и других) двигателей. Инженеров обычно интересует, какой максимальный момент может воспринять данный вал, каково максимальное значение напряжений, каков угол закручивания при заданном моменте и т. п.  [c.356]


Метод сечения при изгибе, как и при других видах деформаций, дает возможность определить изгибающий момент и поперечную силу в сечении балки. Вопрос же распределения упругих сил по сечению является вообще задачей, статически неопределимой. Такие задачи, как мы это видели выше, решаются на основании рассмотрения деформаций. При растяжении и сжатии предполагалось, что все волокна материала получают в направлении действия, сил одинаковые относительные деформации отсюда делалось заключение, что напряжения распределяются по сечению равномерно. Вопрос о распределении напряжений при кручении был решен на основании предположения, что относительные сдвиги отдельных элементов поперечного сечения прямо пропорциональны их расстоянию до оси стержня. Выяснение закона распределения напряжений по сечению при изгибе также может быть выполнено только па основании рассмотрения деформаций.  [c.216]

Но при неравномерном распределении напряжений по сечению и при пластичном материале, как это было показано при рассмотрении кручения вала, метод определения размеров сечения по допускаемым нагрузкам дает иной результат, чем метод допускаемых напряжений, хотя запас прочности остается одинаковым. Совершенно так же дело обстоит и п).и изгибе балки из пластичного материала, диаграмма растяжения которого схематично показана на рис. 140, а. Когда в наиболее опасном сечении балки в крайних волокнах напряжение достигнет величины а , эпюра напряжений в сечении будет иметь вид, показанный на рис. 140, б. При дальнейшем увеличении нагрузки максимальное напряжение в крайних волокнах, вследствие текучести материала, не будет увеличиваться. С увеличением нагрузки будет увеличиваться  [c.242]

Определение главных напряжений. Наиболее просто определить главные напряжения у нейтрального слоя балки. В нейтральном слое нормальные напряжения в поперечном сечении балки равны нулю, и стенка балки здесь находится в состоянии чистого сдвига, которое рассмотрено нами при исследовании кручения в работе 11.  [c.83]

Центром сдвига сечения, или центром изгиба, называется точка, в которой приложена равнодействующая касательных напряжений в сечении при нагружении балки поперечной силой. Следовательно, если линия действия поперечной силы проходит через центр сдвига, эта сила не будет вызывать кручение балки. В общем случае нейтральная ось не проходит через центры сдвига сечений.  [c.236]

Если общая деформация, включающая деформацию ползучести, выражается нелинейной упругой деформацией, зависимость которой от напряжения изменяется с течением времени в соответствии с уравнением (4.33), постепенно увеличивается от а — 1, то распределение напряжений ползучести при изгибе балки или при кручении стержня зависит от времени.  [c.101]

После весьма обширного обзора существующих теорий, относящихся к поведению призматических стержней прямоугольного, квадратного и круглого поперечных сечений при изгибе, растяжении, сжатии и кручении, Дюло приступает к проведению многочисленных экспериментов, проверяя результаты их различными расчетами, включая использование формулы Эйлера для продольного изгиба стоек, и меняя размеры образцов от опыта к опыту. Он также осуществил эксперименты со стержнями арочной формы, но тех же поперечных сечений, и с системами, представляющими собой ансамбль призматических стержней, проверяя такой вопрос, как трение между примыкающими друг к другу стержнями при изгибе и т. д. Кроме того, он проявил интерес к линии раздела между областями сжатия и растяжения в балках из ковкого железа (т. е. к нейтральной линии), а также линейности зависимости между напряжениями и деформациями.  [c.265]

Произведенный анализ- напряженного состояния изогнутой балки прямоугольного сечения показывает, что различные ее точки испытывают напряженные состояния разных видов. Нейтральный слой работает на чистый сдвиг, наиболее удаленные от него слои — на простое растяжение или сжатие, а в промежуточных слоях наблюдаются всевозможные переходные состояния от растяжения (сжатия) к чистому сдвигу, которые можно изобразить целой серией кругов Мора (рис. 180). Полюсы этих кругов непрерывно перемещаются от левого края круга (растянутая кромка) через центр (нейтральный слой) до правого края (сжатая кромка). Таким образом, при изгибе (в отличие от растяжения или кручения) материал испытывает не одно напряженное состояние, а совокупность различных напряженных состояний.  [c.174]

Если плоскость действия сил, к которым сводится нагрузка на балку, не проходит через линию, соединяющую центры изгиба сечений, то балка подвергается не только изгибу, но и кручению парами сил, моменты которых, вообще говоря, меняются по ее длине. Вследствие этого в сечениях балки появляются дополнительные касательные напряжения. С другой стороны, как известно, кручение стержней любого сечения, кроме круглого, сопровождается искривлением сечений. Ввиду переменности крутящего момента по длине балки, а также ввиду препятствий искривлению концевых сечений при их заделке, искривления различных сечений оказываются различными. Мы встречаемся с неравномерным или стесненным кручением, называемым так в отличие от равномерного или свободного кручения, при котором крутящие моменты постоянны по длине стержня и поперечные сечения могут свободно искривляться.  [c.293]


Вторая балка (рис. 62.7, б) загружена на свободном конце вертикальной силой Р, проходящей через ось балки (ось х). Эта сила создает относительно оси центров изгиба момент, равный Рс, действующий в плоскости поперечного сечения и направленный против часовой стрелки. Следовательно, заданная сила Р статически эквивалентна силе Р =Р, проходящей через ось центров изгиба, и скручивающему моменту Рс (действующему против часовой стрелки). В данном случае балка испытывает прямой поперечный изгиб (от силы Р1) и кручение от момента Рс. В поперечных сечениях балки при этом возникают нормальные и касательные напряжения, определяемые, как при прямом поперечном изгибе, и, кроме-того, касательные напряжения от действия скручивающего момента Рс. Последние приближенно можно определить по формулам, приведенным в 6.6.  [c.314]

Пластический изгиб балки в случае произвольной зависимости между деформациями и напряжениями. Теорию поперечного изгиба стержня малых в сравнении с длиной поперечных размеров из материала, закон деформирования которого отличается от закона Гука, можно сформулировать относительно просто. Предположим, что стержень постоянного поперечного сечения цилиндрической или призматической формы нагружен силами, перпендикулярными его продольной оси и действующими в одной из плоскостей, проходящих через ту или иную из главных осей инерции его поперечного сечения. Будем предполагать также, что размеры этого поперечного сечения в сравнении с его длиной малы и что мы вправе поэтому при исследовании деформаций, обусловленных нормальными напряжениями, пренебрегать деформациями, вызванными касательными напряжениями. Наконец, мы исключаем из нашего рассмотрения профили, составленные, хотя бы и частично, из тонкостенных элементов, а также профили несимметричной формы (как, например, уголки или швеллера), поскольку в подобных случаях изгиб может осложняться кручением.  [c.402]

Главный недостаток динамометра-балки — взаимовлияние составляющих и Р , устранить которое полностью не удается при любом расположении датчиков. Вызывается оно тем, что балка под действием силы , резания находится в несимметричном сложном напряженном состоянии. Если точка приложения силы лежит на оси балки, то балка претерпевает косой изгиб совместно с осевым сжатием, иначе появляются еще деформации кручения. Задача устранения взаимовлияний компонентов измеряемой силы значительно упрощается, если балку прямоугольного сечения заменить круглой, для которой поперечная жесткость одинакова во всех направлениях.  [c.56]

В том случае, когда поперечные балки основания имели открытый тонкостенный профиль поперечного сечения, в них возникали дополнительные напряжения от стесненного кручения. Наибольшие значения эти напряжения имеют при кососимметричном нагружении конструкции (при закручивании и боковой качке). Поперечные балки, приваренные к продольным балкам, при этих видах нагружения дополнительно закручиваются благодаря наличию различных прогибов продольных балок. При действии кососимметричных нагрузок силы /С,-, передающиеся на правую и левую продольные балки, имеют разные знаки. В этом случае, если сечение левой продольной балки, в котором к ней крепится -я попереч-  [c.230]

Сравнение этих напряжений с максимальными напряжениями, возникающими при тех же видах нагружения в поперечных балках (1-й столбец табл. 2), показывает, что во всех случаях нагружения, кроме кручения, напряжения в раме шасси существенно меньше напряжений в поперечных балках основания кузова. Наоборот, при кручении наибольшие напряжения возникают в лонжеронах рамы.  [c.232]

При определении напряжений в условиях стесненного кручения к общим напряжениям, вычисляемым по гипотезе плоских сечений, добавляются слагаемые, возникающие от изгиба отдельных элементов балки, что существенно для открытых профилей и имеет второстепенное значение для замкнутых [0.3]. Однако при регулярных вырезах в одной из стенок коробчатой балки дополнительные нормальные напряжения от стесненного кручения могут иметь существенное значение [0.13].  [c.282]

Начнем с того, что пользуясь принципом независимости действия сил, определим отдельно напряжения, возникающие в брусе при кручении, и отдельно — при изгибе. При изгибе в поперечных сечениял бруса возникают, как известно, нормальные напряжения, достигающие наибольшего значения в крайних волокнах балки а = М/Шх, и касательные напряжения, достигающие наибольшего значения у нейтральной оси и определяемые по формуле Журавского. Для круглых и вообще массивных сечений значения их незначительны по сравнению с касательными напряжениями от кручения и ими можно пренебречь.  [c.253]

С проблемой включения в известной степени связана общая проблема рае чета тонкостенных конструкций в условиях стесненного кручения и изгиба. Основополагающие работы в этой области принадлежат С. П. Тимошенко [14], В. Н. Беляеву [1, 2], В. 3. Власову [3]. Так, В. Н. Беляевым (1934 г.) при решении задачи стесненного кручения балки прямоугольного сечения с жесткими продольными ребрами по углам был предложен метод трех осевых сил [2]. Предполагалось, что в балке имеется небольшое количество поперечных дяафрагм, по которым она разрезалась на отсеки. В пределах каждого отсека касательные напряжения предполагались постоянными. Были предложены также модификации этого метода [6]. -  [c.5]

Как указывалось выше, в верхнем поясе балки при действии силы в пролете напряжения изгиба в гopизoнтaJ]ьнoй плоскости и кручения имеют разные знаки, тогда как в нижнем поясе они суммируются друг с другом и с напряжениями общего изгиба (по одной из кромок балки).  [c.71]

Это показывает, что в эксцентрично загруженных балках влияние кручения на расчетн] 1е напряжений по мере увеличения вели- чины Ы уменьшается. К этому же выводу мы пришли и ниже в 35 при исследовании влияния эксцентричности приложения нагрузки на расчетные нормальные напряжения в двутавровых балках.  [c.173]

Для оценки влияния в принципе агрессивной окружающей среды на образцах из однонаправленных композитов в виде прямоугольной балки с рабочей частью уменьшенной ширины в работе 12] было изучено, в каких случаях при испытаниях на кручение устанавливается постоянная амплитуда напряжений. Авторы [2] рассчитали начальные касательные напряжения и наблюдали убывание касательных напряжений с ростом числа проведенных циклов. Прикладывалось начальное касательное напряжение, меняющееся от 0,3 до 0,9 от статического разрушающего напряжения, и поврежденные образцы были в дальнейшем разрезаны и исследованы.  [c.390]

В последующих же главах во втором томе, в частности в главах XI, XII, XIII, посвященных деформации стержней, аппарат теории сплошных сред (главным образом теория упругости) играет уже чисто служебную роль, как рабочий инструмент, с одной стороны, для оценки гипотез, используемых в элементарной теории, и границ применимости последней, а с другой стороны, для решения тех задач, которые не могут быть решены средствами элементарной теории. К числу последних относятся кручение призматических стержней некруглого поперечного сечения, свободное кручение валов переменного вдоль оси диаметра, определение полного касательного напряжения при поперечном изгибе балки, определение положения центра изгиба в поперечном сечении массивных стержней и др.  [c.13]


Внешний конец на три четверти разгруженной полуоси (фиг. 89, б) закреплён на ступице колеса и опирается на балку ведущего моста через П0ДШИ1П1НК, установленный между ступицей и балкой при этом полуось работает на кручение моментом, при передаче через неё крутящего момента и частично при налнчии боковой силы R на изгиб при этом напряжение изгиба в полуоси будет зависеть от соотношения жёсткостей полуоси и подшипника (при его перекосе).  [c.90]

Секториальные касательные напряжения т , возникающие в поперечных сечениях тонкостенного стержня при стесненном кручении, можно определить из уравнения равновесия бесконечно малого элемента стержня abed (рис. 14.8, а, б) аналогично тому, как это было сделано при выводе формулы Д. И. Журавского (7.32) для касательных напряжений при изгибе балки.  [c.301]

Имеетея еще третий тип энергии деформации, который связан с закручиванием ребер, хотя он и не является строго крутильным. Если ребро закручивалось с постоянной скоростью кручения, то выражение (4.75а), которое описывает энергию деформации, соответствующую касательным напряжениям и деформациям, возникающим при кручении, будет достаточно. На практике скорость кручения, как правило, не постоянна, и части ребра, расположенные вне пластины, будут при этом подвергаться также и изгибу в плоскости пластины из-за переменности скврости кручения. Так как такому изгибу подвергаются все части ребра, то обычно бывает достаточно рассмотреть полки ребер, поскольку они, как правило, наиболее удалены от пластины и дают наибольший вклад в жесткость в плоскости пластины. Момент инерции If каждой полки двутавровой балки, используемой в качестве подкрепляющего ребра, можно приближенно взять равным половине момента инерции всего поперечного сечения относительно стенки как оси, который приводится в справочниках по строительной механике.  [c.264]

Следующий раздел книги Клебш посвящает задаче Сен-Ве-нана. Он опускает соображения физического характера, введенные Сен-Венаном при использовании им здесь полуобратного метода, и ставит проблему в чисто математической формулировке найти силы, которые должны быть приложены к торцам призматического бруса, если объемные силы отсутствуют, по боковой поверхности бруса не приложено никаких сил, но между продольными волокнами действуют лишь касательные напряжения в осевом направлении. Таким путем Клебш получает возможность задачи осевого растяжения, кручения и изгиба рассматривать и решать как единую задачу. Подобная трактовка вопроса принимает более сложный вид, чем у Сен-Венана, поскольку при этом подходе опускается физическая сторона явления и решение получается слишком абстрактным, чтобы заинтересовать инженера. Клебш проходит мимо тех многочисленных приложений, на которых останавливается Сен-Венан, демонстрирующий эффективность своего метода на балках различных поперечных сечений. В качестве примеров Клебш приводит случаи сплошного эллиптического бруса и полого бруса, поперечное сечение которого образовано двумя конфокальными эллипсами. Почти никакого практического интереса эти задачи не представляют, но Клебш обращается к ним для того, чтобы впервые ввести новый прием математической трактовки, а именно, использовать сопряженные функции в решении задачи Сен-Венана.  [c.310]

Тимошенко С. П., Применение функции напряжений к исследованию изгиба и кручения призматических стержней. Сб. Спб ин-та инженеров путей сообщения, Спб, 1913, вып. 82, стр. 1—24 отд. оттиск Спб, 1913, 22 стр. (Замечание. В этой статье была найдена такая точка в поперечном сечении балки, к которой следовало бы приложить сосредоточенную силу, чтобы устранить кручение. Таким образом, эта работа оказывается первой, где определялся центр сдвига балки. Рассмотренная балка имела сплошное поперечное сечение в форме полукруга [8.2]. В 1909 г. К- Бах провел испытания швеллерных балок и кащел, что, когда нагрузка прикладывается параллельно плоскости стенки, в балке возникает кручение (см. [8.3] и [8.4]). Он также обнаружил, что закручивание изменяется при боковом смещении нагрузки, но, по-видимому, центр сдвига им не был определен. В 1917 г. А. А. Гриффитс и Дж. Тейлор использовали для исследования изгиба метод мыльной пленки для некоторых типов конструкционных профилей они определили центр сдвига, который был ими назван центром изгиба [8.5]. Общее приближенное решение задачи определения центра сдвига тонкостенного стержня незамкнутого профиля было получено Р. Майяром, который объяснил практическое значение определения центра сдвига в конструкционных профилях [8.6] и ввел термин центр сдвига . Дальнейшее развитие концепции центра сдвига содержалось в работах [8.7—8.16], Всестороннее обсуждение центра сдвига, а также задачи изгиба и кручения балок в общей постановке проведено в работе [8.17] некоторые исторические замечания, относящиеся к центру сдвига, можно найти в работах [8.18] и [8.19].)  [c.555]

Точный расчет лгаогоопорного коленчатого вала трудоемок и производится лишь в исключительных случаях. Для обычного расчета вала многоцилиндроБой машины достаточно рассчитать каждое колено в отдельности как балку на двух опорах и проверить лишь те колена, у которых изгибающие и крутящие моменты имеют наибольшие значения. При расчете учитывается усталость материала и влияние концентрации напряжений. В опасных местах колен определяются предельные (крайние) номинальные напряжения изгиба и кручения, т. е. максимальные (Оглах, т ах) И минимальные (сГт п, Тп,1п) напряжения цикла по ним определяются средние напряжения  [c.559]

Нормальные напряжения, возникающие в поясах балок при кручении, определяются по формз лам табл. 9, где й — расстояние между центрами тяжести поясов балки И/ = —расчётный фактор изгиба пояса при кручении 1у — момент инерции сечения балки относительно вертикальной оси у — у, 6-ширина пояса балки С=810000Агг/сл2-модуль упругости при сдвиге а —коэфициент, определяемый по формуле  [c.929]

Система ходовых и грузовых путей при движении тележек с грузами подвергается общему поперечному изгибу, местному изгибу полок под катками тележек и стесненному (изгибному) кручению из-за эксцентричного расположения катков тележек относительно вертикальной оси сечения профиля, проходящей через центр изгиба. Балки путей рассчитывают на изгиб во всех его указанных видах и прогиб, величина которого не должна превышать 1/500 пролета. При большом прогибе могут возникнуть чрезмерные поперечные колебания путей и толкатель выйдет из зацепления с тележкой (особенно опасно при пуске конвейера). При чрезмерном прогибе также повышается усилие, необходимое для перемещения тележки с грузом. Общее максимальное напряжение в фибрах балок складывается из всех этих отдельных составляющих напряжений и для стали СтЗ не должно превышать 1400 кгс/см , а для стали 14Г2 — 1600 кгс м .  [c.191]

Кроме того на балку действует изгибающий момент от веса резервуара с водой, вследствие же ее криволинейного очертания в плане в ней возниь ают напряжения кручения. Расчет опорного к ольца на растяжение см. Резервуары. Расчет кольца на изгиб при цилиндрич. резервуарах не производится, т. к. изгибу сопротивляется не только кольцо, но и жестко соедине1П1ал с ним стенка резервуара. В табл. 1 даны изгибающие моменты в пролете и на опорах, но без учета влияния сопротивления изгибу всей стенки резервуара. В той же таблице указаны наибольшие скручивающие могченты. Таблица составлена для нагрузки, равномерно распределенной по окружности опорного кольца [Р— нагрузка, г — радиус кольца).  [c.211]


Смотреть страницы где упоминается термин Напряжения в балках в балках при кручении : [c.11]    [c.240]    [c.169]    [c.169]    [c.261]    [c.323]   
Справочник машиностроителя Том 3 (1951) -- [ c.226 ]



ПОИСК



Балки Напряжения

Балки кручение

Напряжение в кручении

Напряжения в балках от кручения



© 2025 Mash-xxl.info Реклама на сайте