Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние на при кручении

Описание процессов, происходящих при деформации кручения, сделано с некоторыми упрощениями, не нарушающими при этом необходимой степени достоверности. Явления, которыми мы пренебрегли, не оказывают существенного влияния на прочность скручиваемых деталей. Однако сделанные допущения позволяют значительно упростить вывод расчетных соотношений. В настоящей главе рассмотрены явления, происходящие при кручении только брусьев круглого поперечного сечения.  [c.188]


Приведенные расчетные формулы надо в большинстве случаев рассматривать как приближенные, так как обычно валы, помимо кручения, испытывают изгиб (расчет на совместное действие кручения и изгиба рассмотрен ниже). Чтобы, несмотря на пренебрежение влиянием изгиба, вал обладал достаточной прочностью, при расчетах на чистое кручение принимают пониженные допускаемые напряжения. Этим понижением [т] приближенно учитывают также возможные ослабления вала шпоночными канавками и переменность возникающих напряжений во времени.  [c.266]

В предыдущих главах сопротивления материалов были рассмотрены простые виды деформации бруса — растяжение (сжатие), сдвиг, кручение, прямой изгиб, характерные тем, что в поперечных сечениях бруса возникает лишь один внутренний силовой фактор при растяжении (сжатии) — продольная сила, при сдвиге — поперечная сила, при кручении — крутящий момент, при чистом прямом изгибе — изгибающий момент в плоскости, проходящей через одну из главных центральных осей поперечного сечения бруса. При прямом поперечном изгибе возникает два внутренних силовых фактора— изгибающий момент и поперечная сила, но этот вид деформации бруса относят к простым, так как при расчетах на прочность совместное влияние указанных силовых факторов не учитывают.  [c.301]

Как показывают эксперименты, при увеличении диаметра до 150—200 мм снижение пределов выносливости образцов при ротационном изгибе (см. рис. 578) может достигать 30—45 %. Опытные данные свидетельствуют о малом влиянии абсолютных размеров на выносливость при однородном напряженном состоянии — растяжении — сжатии. При кручении, как и при изгибе, снижение пределов выносливости с ростом размеров детали проявляется в большей степени. Это следует отнести за счет влияния градиента напряжения.  [c.669]

Кручение пластинок с выемкой по торцовым поверхностям может осуществляться при поперечном сечении ее рабочей части, выполненной в форме круга, кольца и квадрата. Наиболее приемлемым с точки зрения характера распределения касательных напряжений является сечение в виде кольца. Но процесс его изготовления намного сложнее, чем изготовление квадратного сечения. Значительные трудности возникают при обработке боро-, органо-и углепластиков. Кроме того, в местах выемки и сверления по наружным поверхностям наблюдается повреждение структуры материала. Пределы прочности при сдвиге таких образцов для большинства исследованных композиционных материалов оказываются ниже, чем значения, полученные на образцах с рабочей частью в форме квадрата (табл. 2.10). Технология изготовления последних весьма проста, не требует специальных инструментов и приспособлений. Однако размеры поперечного сечения квадрата, как показывают исследования, оказывают заметное влияние на сдвиговую прочность.  [c.47]


Влияние отверстия и надреза на неравномерность распределения продольных l и поперечных 02 напряжений в поперечном сечении растягиваемого плоского образца представлено на рис. 13.3, а. При этом с уменьшением радиуса дна надреза R и профиля угла надреза а местные напряжения в зоне надреза возрастают, происходит их концентрация, оказывающая существенное влияние на снижение прочности детали. При изгибе и кручении влияние подобных факторов представлено на рис. 13.3, б.  [c.248]

При испытаниях на циклическое кручение, а также изгиб и растяжение-сжатие при получении разрушающего напряжения Ор> 500 МН/м2 (50 кгс/мм ) уже нельзя пользоваться номограммой, представленной на рис. 43. В этом случае ордината горизонтального участка или предел выносливости соответствующих условных кривых усталости б (о ), абсцисса точки перегиба ветвей кривых усталости (Л о) и характеристика наклона левой ветви условной кривой усталости (/Сб) определяются по результатам испытаний аналогичных образцов или деталей машин с учетом влияния на указанные характеристики конструктивных и технологических факторов и масштабного эффекта.  [c.83]

Под действием внешнего давления предел выносливости, как правило, возрастает. Существуют устройства, позволяющие исследовать влияние гидростатического давления на усталость при осевом нагружении, изгибе с вращением, кручении i[208]. При гидростатическом давлении образец подвергается равномерному трехосному сжатию. Внешнее давление оказывает существенное влияние на механизм развития трещины с момента зарождения разрушения в области интенсивного скольжения.  [c.257]

Метод получения имеет сильное влияние на измельчение наноструктуры при отжиге и свойства материала. Сравнение результатов исследования Ni, подвергнутого РКУ-прессованию, ИПД кручением и их совместному воздействию [235], показывает, что эволюция структуры в этих случаях протекает при различных температурах. В результате формируются различные структуры и имеют место различия в величине коэрцитивной силы Яс. Например, окончательный возврат коэрцитивной силы Не происходит при более высокой температуре в случае, когда материал подвергнут РКУ-прессованию, а затем кручению.  [c.127]

На склонность к ЗР существенное влияние оказывает так же характер напряженного состояния. Для сталей в закаленном состоянии склонность к ЗР проявлялась тем резче, чем меньше жесткость напряженного состояния, например, при кручении и на гладких образцах ЗР было более вероятным [114], чем при изгибе и на надрезанных образцах. С увеличением пластичности стали (закалка с отдыхом) склонность к ЗР становится тем резче, чем больше жесткость напряженного состояния.  [c.57]

Выносливость металла в атмосфере воздуха мало зависит от закона изменения напряжений в течение одного цикла и до частот порядка 1000 Гц практически не зависит от частоты изменения напряжений. Основное влияние на усталостную прочность металла оказывает вид напряженного состояния (наибольшей выносливостью металл обладает при циклическом изгибе, меньшей — при растяжении —сжатии и наименьшей —при кручении), а также величина и знак максимального и минимального напряжений. Влияет на усталостную прочность металла и степень асимметрии при изменении напряжений. Оказалось, что чем больше доля постоянного напряжения, тем выше выносливость при асимметричном цикле.  [c.77]

Если считать, что процесс усталостного разрушения на стадии возникновения усталостной трещины состоит из двух этапов (1 — возникновение поверхностных трещин в результате скольжения в наиболее благоприятно ориентированных зернах и 2 — преодоление трещиной границы зерна и распространение ее на несколько зерен), то можно предположить, что на первом этапе основное влияние на разрущение оказывают амплитуда касательных напряжений и их градиент, а на втором — максимальные нормальные напряжения. Таким образом, параметром, которым различаются переход от первого ко второму этапу развития начальной усталостной трещины при изгибе и кручении, является критический размер трещины. При изгибе это примерно одно-два кристаллических зерна, при кручении — площадка размером до 1 мм. Сопоставление числа первичных усталостных трещин, возникающих на поверхности образцов при кручении и изгибе, в условиях действия критического напряжения сдвига на базе 10 циклов нагружения, показывает, что при кручении начальных трещин образуется значительно больше (табл. 10).  [c.84]


Сопоставление влияния ППД на усталость при кручении и изгибе показало, что и для гладких, и для надрезанных образцов упрочнение менее эффективно при кручении, чем при изгибе. Полученную закономерность можно объяснить меньшей эффективностью остаточных напряжений сжатия при кручении.  [c.156]

На рис. 7 дана условная диаграмма предельной пластичности материала, испытанного при различных температурно-скоростных условиях деформации. При построении таких диаграмм следует помнить, что на величину Лр в условиях горячей деформации существенное влияние оказывает скорость деформации. К сожалению, во многих исследованиях этому не уделялось должного внимания и испытания по различным методам (сжатие, растяжение, прокатка на клин, кручение) проводились в совершенно несопоставимых скоростных диапазонах в зависимости от возможностей испытательных машин и исследовательского оборудования.  [c.21]

Бейкер Ю. Влияние скорости деформации на распространение пластических волн при кручении.— Прикл. механика, 1966, №4, с. 220—229.  [c.248]

Если принять, что вся поверхность мембраны параболическая и пренебречь влиянием поперечных сторон прямоугольника, то можно получить формулу для расчета жесткости при кручении. Она будет равна двойному объему цилиндра, деленному на 0  [c.85]

Влияние на кручение изгибающих моментов. В тонкостенных стержнях открытого профиля возникает эффект стеснения депланации и при воздействии на стержень внешнего изгибающего момента. Следует строго разграничивать случаи образования внешнего изгибающего момента поперечными силами (как это было показано выше) и продольными силами. На рис. 14,20 показан стержень швеллерного сечения. На рис. 14.20, а изображена эпюра секторных площадей этого сечения. На рис. 14.20, б, в показаны два варианта создания изгибающего момента поперечными силами и продольными силами, действующими в одной и той же плоскости. При этом изгибающий момент, созданный поперечными силами, кручения стержня не вызывает, поскольку плоскость его действия проходит через центр изгиба. Продольные же силы, образующие изгибающий момент, вызывают кручение, поскольку сила Р, приложенная в точке В, где ордината эпюры со не равна нулю, создает бимомент В = Р(о . На рис. 14.20, г, д изображен другой случай расположения линий действия поперечных и продольных сил, создающих изгибающий момент. В этом случае момент, создаваемый поперечными силами, вызывает кручение, поскольку плоскость его действия не проходит через центр изгиба сечения, а изгибающий момент, создаваемый продольными силами, кручения не вызывает, так как в точках приложения обеих сил (точки 5 и ординаты эпюры и равны нулю, и следовательно, бимомент, соответствующий этим силам, равен нулю. Пусть момент представляется как результат  [c.415]

В расчетах влияние поперечных раз.меров детали учитывается коэффициентом, который называется масштабным фактором и представляет собой отношение предела выносливости образца данного диаметра к пределу выносливости образца диаметром 10 мм При этом предполагается, что состояние поверхности образцов одинаково. На фиг. 95 приведены кривые зависимости масштабного фактора при изгибе и при кручении вала от его диаметра d.  [c.392]

Так как опыты показали, что шпонка, расположенная на разъеме, не оказывает влияния на прочность диафрагмы, ее наличие в расчет не принимается. При оценке прочности диафрагм со стойками в практических расчетах лопатки не учитывают и в качестве расчетного элемента рассматривают только стойки. Более точный расчет системы стойка—лопатка пока затруднителен (так как такого рода конструкции применяются при весьма коротких лопатках), и интерпретация ее элементов в виде стержней вряд ли является правильной. Особенные трудности в данном случае возникают при определении деформаций кручения.  [c.323]

Набор или список степеней свободы модели зависит от типа элементов, используемых при моделировании. Так, в узлах элементов работающих на изгиб и кручение (элементы балки и оболочки) определены все шесть компонентов смещений, а в узлах трехмерных элементов - только перемещения вдоль осей координат. Если в модели нет элементов, работающих на изгиб, то список степеней свободы не будет содержать углы поворота элементов в узлах. Это не означает, что их нет, просто углы поворота не оказывают влияние на величину полной Потенциальной энергии конструкции.  [c.186]

Jр и Wp— это геометрические характеристики сечения при кручении, т. е. величины, характеризующие влияние формы и размеров сечения на сопротивляемость стержня скручиванию. Как показано ниже ( 48), величины их определяются через диаметр вала.  [c.169]

VI — эффективные коэффициенты концентрации напряжений (отношение предела усталости, полученного в результате испытаний гладких образцов, к пределу усталости, полученного на образцах с концентратором напряжений) соответственно при изгибе и при кручении [1, 10, 31, 33] — коэффициент влияния абсолютных размеров поперечного сечения — масштабный фактор (отношение предела усталости образцов и деталей реальных размеров к пределу усталости, полученному при испытаниях стандартных образцов малых диаметров) [1, 31] Кр — коэффициент влияния шероховатости поверхности [10, 31] Ку — коэффициент влияния упрочнения, вводимый для валов и осей с поверхностным упрочнением (закалка ТВЧ — цементация, азотирование и т. п.) [2, 7] и — коэффициенты чувствительности материала к асимметрии цикла напряжений соответственно при изгибе и кручении (см. табл. 16.2).  [c.418]

В работе [18] учитывается влияние сдвига при изгибе пластинок, что может заметно повлиять на частоту колебаний только при относительной толщине диска (Ri > 0,2) или при большем числе узловых диаметров (т > 6). Модели стержня усложняются из-за более полного учета естественной закрутки [78, 79], стесненного кручения, касательных напряжений кручения и изгиба [18].  [c.277]


Оценку влияния концентрации напряжений при изгибе с кручением обычно осуществляют на основании соответствующих усталостных испытаний на машине, позволяющей создавать одновременное нагружение образца крутящими и изгибающими моментами при различном их соотношении. На рис. 564 представлены результаты экспериментов при синфазном изменении нормальных и касательных напряжений при симметричном цикле (o ik, t ik — пределы выносливости при симметричном цикле для образцов с концентрацией только при изгибе и только при кручении соответственно а<, , Га предельные амплитуды для образцов с концентрацией при одновременном действии изгиба и кручения).  [c.603]

Эта формула выражает закон Гука при кручении. Входящий в нее коэффициент пропорциональности к в значительно большей степени зависит от радиуса цилиндра, а не его длины. Тонкие проволоки под влиянием даже очень малого вращающего момента закручиваются на значительный угол. Это их свойство используется для создания чувствительных подвесных систем в измерительных приборах, таких, как, например, крутильные весы Кавендиша (см. 25).  [c.161]

Другой путь решения задачи заключается в установлении критерия прочности (критерия предельного напряженно-деформированного состояния). Для этого вводят гипотезу о преимущественном влиянии на прочность материала того или иного фактора полагают, что нарушение прочности материала при любом напряженном состоянии наступит только тогда, когда величина данного фактора достигнет некоторого предельного значения. Предельное значение фактора, определяющего прочность, находят на основании простых, легко осуществимых опытов на растяжение. Иногда пользуются также результатами опытов на кручение. Таким образом, введение критерия прочности позволяет сопоставить данное сложное напря-  [c.200]

Дарлингтон и Саундерс [21], предполагая симметричность, т. е. считая, что Si2 = S2i, использовали равенство (25) для определения величины 5бб. Они отметили, что найденное таким образом значение податливости при сдвиге Sgs хорошо согласуется с опытами на ползучесть при кручении образца в случае 0 = 0°, хотя и не привели результатов этих опытов. Полученное согласование, казалось бы, позволяет заключить, что 5i2 = S2i тем не менее этот вопрос остается открытым, поскольку член 4О45 в формуле (25) по величине намного превышает 5ц, 52i и Si2, так что несовпадение 5,2 и 52j (если оно имеет место) не оказывает существенного влияния на величину See-  [c.111]

Разумеется, проведение исчерпывающих исследований усталостных свойств требует гораздо больше времени, чем исследования свойств при кратковременных испытаниях. Однако в настоящее время получен уже значительный объем информации. Большинство опубликованных данных относятся к композитам на основе волокон типа I и получены в исследованиях Ноттингемского университета (Англия) [8—И] и Суссекского университета (Англия) [2]. Детальное изучение экспериментальных работ проведено в [1, 6]. Дополнительные данные по усталости даны в работах [14, 15, 12]. Оуэн и Моррис сосредоточились в основном на усталости при осевом нагружении и в меньшей степени на изгиб-ных и межслойных сдвиговых свойствах. В работе [2] основное внимание уделялось влиянию окружающей среды, и после предварительных испытаний в условиях осевого и изгибающего нагружения проводились главным образом испытания на усталость при кручении. Результаты Снелла [14] относятся к усталости при изгибе, а в работе [15] приведены данные по усталости при межслойном сдвиге. Симон и Барнет [12] опубликовали некоторые результаты по усталости при кручении вместе со многими другими свойствами.  [c.367]

Для сравнения влияния окружающей среды, в частности воздуха, масла или воды (при 100° С), авторы [2] нанесли на график нормированное начальное напряжение в зависимости от логарифма долговечности для случая, разрушения, определенного различными долями начального напряжения в цикле. Им удалось произвести полное сравнение только при весьма высоких уровнях напряжений, и для этого были выбраны напряжения, равные 75 и 90% от начального. Было найдено, что результаты в случаях масла и воздуха почти совпадают для композитов как с обработанными, так и с необработанными волокнами. В воде при 100 °С повреждения композитов обоих типов были примерно одинаковыми. Были проведены исследования [21 распространения трещины при кручении, из которых следовали аналогичные выводы. Нагружение кручением в виде, представленном в работах [12, 2], едва ли возникает на практике из-за очень низкой крутильной жесткости однонаправленных углепластиков. Однако проведенные исследования подчеркнули значение видов нагружения, при которых матрица и поверхность раздела испытывают существенные деформации.  [c.391]

При осевом нагружении были обнаружены превосходные усталостные характеристики как однонаправленных, так и ортогонально армированных углепластиков с высокомодульными волокнами типа I. Удельная усталостная прочность углепластиков вместе с удельным модулем дают большие возможности для уменьшения веса изделия притих разумном применении. Хотя пока опубликовано немного данных, по-видимому, можно сказать, что композиты с волокнами типа II более подвержены влиянию усталости, но обладают все же очень хорошими усталостными свойствами. Отсутствуют опубликованные результаты для композитов с волокнами типа III. Обнаружено, что прочность на сжатие намного ниже, чем прочность на растяжение, и поэтому изгибная усталостная прочность определяется прочностью на сжатие. Было установлено, что влияние усталости значительно более заметно в условиях сдвигового нагружения как при межслойном сдвиге, так и при кручении. Не сообщено об усталостных испытаниях при сдвиге в плоскости листа, однако большинство  [c.391]

На рис. 1.15 представлены графики длительной прочности стали 12Х18Н12Т после наклепа различными способами. Образцы, наклепанные неравномерным растяжением, разрушались в зоне максимальной деформации, равной 30%. Образцы, наклепанные изгибом, разрушались в зоне, деформированной на 15%. Из рис. 1.15 видно, что предварительный наклеп кручением снижает длительную прочность стали при степени деформации 30% и мало влияет в случае наклепа на 15 %. Наклеп изгибом 15% заметно снижает длительную прочность стали. Таким образом, способ деформирования оказывает существенное влияние на роль холодного наклепа в изменении свойств жаропрочности аустенитных сталей, причем из изученных способов деформирования наиболее отрицательное влияние оказывает деформирование изгибом. Кроме того, из данных, приведенных на рис. 1.15, видно, что значительную роль играет степень наклепа.  [c.31]

В работе [69] методом РСА исследовано влияние степени ИПД кручением на формирование твердого раствора в несмешиваемых системах Fe- u и Fe-Bi при консолидации интенсивной деформацией порошков Fe, Си и Bi. Исследование фазового состояния и параметров решетки позволило установить, что при степенях ИПД вплоть до 6,4 в сплаве Fe-20 ат. %Си формируется смесь двух неравновесных неоднородных твердых растворов на основе ОЦК Fe и ГЦК Си. Методом просвечивающей электронной микроскопии установлено, что распределение зерен по размерам носит бимодальный характер с максимумами, соответствующими 15 нм и 40 нм. Увеличение степени ИПД до значения 7,2 в данном сплаве привело к формированию пересыщенного неоднородного твердого раствора Си в Fe с одномодальным распределением зерен по размерам. Средний размер зерен составил 10 нм.  [c.49]

При малоцикловом нагружении в условиях концентрации на-иряжений, когда уровень нагрузок, приводящих к возникновению и развитию усталостных трещин, более высокий, чем при обычной усталости, величина дополнительных напряжений от кручения ста-ношгтся достаточной, чтобы оказывать за.метное влияние на меха-Ш13.М роста трещины. В рассматриваемом случае это влияние было облегчено тем, что испытания проводили при высокой температуре, способствуюхцей более свободному протеканию сдвиговых деформаций.  [c.295]


Экспериментально установлено, что циклическое нагружение ускоряет процессы релаксации макронапряжений и может вызвать полное снятие их при температурах, при которых степень термически активируемого возврата незначительна. Так, например, снятие макронапряжений, создаваемых поверхностным наклепом в образцах из стали 50, практически начинается при напряжениях, превышающих 0,7 r i (где — предел выносливости гладкого поверхностно наклепанного образца). При циклических напряжениях 0,9a j снимается преобладающая часть макронапряжений [38]. При большом градиенте напряжений изгиба и кручения (образцы малого диаметра) макронапряжения полностью снимаются при напряжениях, превышающих предел выносливости. На образцах большого диаметра (малый градиент изгибающих напряжений) возможно полное снятие макронапряжений при напряжениях, равных пределу выносливости. Основная часть релаксируемых в заданных условиях нагружения остаточных макронапряжений снимается в первый период циклической наработки —до 1 млн. циклов. Поэтому чем выше уровень циклических напряжений, тем меньше роль и значимость остаточных макронапряжений в их влиянии на усталостную прочность при прочих равных условиях.  [c.143]

Испытание образцов с надрезами при однократном нагружении. Ввиду наличия в различных деталях машин и других изделиях всевозможных канавок, вьггочек, отверстий, нарезок, галтелей, необходимых для конструктивных и эксплуатационных целей, возникла необходимость выяснить чувствительность материала к надрезам, для чего производится сопоставление результатов испытания материала в гладких образцах и образцах с надрезом. Наряду с этим определяют и абсолютные значения характеристик материала при наличии надреза в образце. В большинстве случаев налрез снижает пластичность и вязкость материала и мало влияет на прочность. Испытания производят при различных видах деформации образца (растяжение, сжатие, кручение, изгиб), различных геометрических параметрах надрезов, различных абсолютных размерах образцов все эти факторы оказывают существенное влияние на чувствительность к надрезу. Рассматривают чувствительность материала к надрезу по признаку прочности, деформации, вязкости. Наибольшее значение имеют исследования, в которых образцы доводятся до разрушения. В надрезанных образцах, в силу концентрации напряжений, пластические деформации локализуются областью надреза и характер разрушения образца, хрупкий при неинструментальном осмотре, оказывается на самом деле пластичным, что обнаруживается при микроскопическом изучении.  [c.301]

Локальность оценки свойств с помощью микромеханнческих испытаний достигается в тем большей степени, чем меньше размеры образцов. Однако это уменьшение ограничивается не столько технологическими возможностями, сколько требованиями точности при изготовлении и измерении образцов, оказывающей существенное влияние на точность определения механических характеристик. Исходя из этого, в практике эксперимента наибольшее применение получили круглые образцы диаметром 0,8 1,0 и 1,2 мм — на растяжение и 1,2 1,6 и 2 мм — на кручение.  [c.156]

Учитывая, что при циклическом кручении образца выделяется больше тепла, чем при изгибе, предполагают, что коррозионная среда должна оказывать влияние также на тепловой эффект, связанный с величиной амп ]и-туды циклического напряжения и с видом нагружения, причем это влияние должно быть больше при кручении. Н.Л.Кукляком и др. установлено [182, с. 500-504], что при больших напряжениях ( о = 2Q0 240 МПа)  [c.115]

Если в результате расчёта получены существенные отклонения по коэфициенту стеснения k и качеству профиля X от предварительно принятых значений, то необходимо произвести повторный расчет второго приближения. Тол-щй 1у. профиля нео5>1рдимо выбрать в соответствии с расчётом лопасти на прочность, который производится на сложное напряжение изгиба под действием сил Y п X, а также растяжения под влиянием центробежной силы. Кручение, вызванное смещением точки приложения равнодействующей сил гидравлического давления от линии центров тяжести сечений лопастей, учитывается введением соответствующего коэфициента запаса. Силы гидравлического давления при расчёте лопасти на прочность увеличивают в отношении мощности холостого хода Nq к рабочей мощности.  [c.366]

Фиг. 64. Влияние коррозии в пресной ноде, имею щей место во время испытаний, на предел вынос ливости чугунных образцов при изгибе и при кручений. Фиг. 64. <a href="/info/235666">Влияние коррозии</a> в пресной ноде, имею щей место во <a href="/info/129112">время испытаний</a>, на предел вынос ливости чугунных образцов при изгибе и при кручений.
Г. А. Степанов [Л. 74] показал, что наклеп растяжением или кручением существенно снижает длительную прочность крепежных деталей из стали 25Х2М1ФА при 550° С. Заметного влияния на длительную пластичность наклеп не оказал.  [c.241]

Геометрические параметры в группе 3 обязательно должны быть независимьши один от другого и однозначно определять геометрию детали. Вся их совокупность образует геометрическую группу, зависимую от групп 2 та. 1. Геометрические параметры способны изменяться неп]зерывно и в широких пределах, благодаря чему появляется возможность изменять параметры других параметрических групп. Иногда непрерывность изменения геометрических параметров нарушается и преобретает дискретный характер, если налагаются ограничения в виде регламентации стандартными рядами предпочтительных чисел или особыми требованиями. К геометрическим параметрам относятся размерные комплексы. Из них важное значение в оптимизации функциональных параметров приобрела величина, обратная эффективному коэффициенту концентрации напряжений,— коэффициент проектирования К . Насколько важно значение коэффициента проектирования в оценке влияния конструкторско-технологических факторов, проследим на примере ступенчатого вала при кручении (диаметр наибольшей ступени В, диаметр наименьшей ступени (1=012, теоретический коэффициент концентрации напряжений K =, 2(> в области изменения формы)  [c.318]

Клюшки для игры в гольф должны обладать следующими свойствами быть легкими, иметь достаточную жесткость при кручении и прочность при изгибе и т. д. На эти свойства решающее влияние оказывает ориентащ1я волокон. Обычно для повышения жесткости при кручении угол намотки внутреннего слоя составляет + (30 - 60°), а для регулирования жесткости при изгибе и получения достаточной прочности на изгиб внешний слой ориентируют под углом от О до 10х к оси трубки. С точки зрения технологии формования клюшек для игры в гольф важно получать материал с низкой пористостью и регулярной структурой расположения волокон.  [c.107]


Смотреть страницы где упоминается термин Влияние на при кручении : [c.164]    [c.357]    [c.285]    [c.58]    [c.107]    [c.578]    [c.172]    [c.300]   
Расчет на прочность деталей машин Издание 3 (1979) -- [ c.379 , c.380 ]



ПОИСК



Балки Влияние смещения опор Изгиб и кручение

Влияние Предел прочности при кручении

Влияние жесткости стержня при чистом кручении на величину нормальных напряжений при изгибе и кручения

Влияние на прочность при переменных нагрузках или кручения

Влияние неоднородности кручения

Влияние переменности определяющих параметров на потерю устойчивости при кручении

Влияние циклического кручения на прочность материалов

Испытания механических овойств, влияние кручение

Исследования нелинейного кручения, включающие изучение влияния на намагничивание, проводившиеся

Коэффициент учитывающий влияние состояния поверхности при изгибе и кручении валов

Кручение — Влияние надрезов

Образование слоев пластической деформации в стальном стержне, подвергнутом кручению Влияние вырезов и отверстий

Оценка влияния кручения на устойчивость решетки из прокатных уголков

Оценка влияния продольных усилий в поясах от кручения на несущую способность опоры

Приведенная формула для подбора сечений двутавровых балок, находящихся в условиях поперечного изгиба и кручения — Влияние эксцентричности приложения нагрузки на суммарные нормальные напряжения в двутавровых балках

Продольная неравномерность распределения нагрузки, вызванная деформациями кручения вала и ступицы. . — Влияние формы ступицы на продольную неравномерность распределения нагрузки в зубчатых соединениях

Углепластики, влияние окружающей кручение кольцевых образцов



© 2025 Mash-xxl.info Реклама на сайте